The search functionality is under construction.

Author Search Result

[Author] Yuki ARAI(78hit)

1-20hit(78hit)

  • A Remark on Spatial Correlation Coefficient Focusing on Propagation Channels for Evaluating Multi-Antenna Systems

    Daisuke UCHIDA  Takero ASAI  Hiroyuki ARAI  

     
    PAPER-Adaptive Array Antennas/MIMO

      Vol:
    E96-B No:10
      Page(s):
    2506-2512

    Spatial correlation is an index for evaluating performance of multi-antenna systems. Although various equations exist, the distinction remains evasive. This paper presents applicable condition of equations for spatial correlation coefficient considering propagation channels. We reveal that under Rayleigh fading environments, the spatial correlation is properly evaluated by the equation based on three-dimensional radiation patterns, however, under environments with strong direct waves, the equation based on the channel matrix should be used for the evaluation.

  • Application of Partially Rotational Scan Technique with Tester IP for Processor Circuits

    Kenichi ICHINO  Ko-ichi WATANABE  Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Scan Testing

      Vol:
    E87-D No:3
      Page(s):
    586-591

    The partially rotational scan (PRS) technique greatly reduces the amount of data needed for n-detection testing. It also enables at-speed testing using low-speed testers. We designed tester intellectual properties (tester IP) with PRS for Viper and COMET II processors. When PRS was applied to a Viper processor, we obtained test data that provided the same fault coverage as with a set of automatic test pattern generation (ATPG) test vectors, although the amount of test data was 16% that of the ATPG. When the PRS technique was applied to a COMET II processor with full-scan design, we obtained test data that provided the same fault coverage as with a set of ATPG test vectors, although the amount of test data was 10% that of the ATPG. We also estimated hardware overhead and test time.

  • Evaluation of Digital-to-RF Upconversion Transmitter Using Harmonic Images of DAC Output

    Minseok KIM  Tatsuo FUJI  Takafumi NAKABAYASHI  Hiroyuki ARAI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1215-1218

    This letter evaluates a transmitter architecture using harmonic images in D/A conversion for generating RF signals. In generating harmonic images, the problems such as intermodulation distortion of DAC were investigated. We developed an evaluation system with two bandpass filter and a buffer amplifier. It was experimentally found that the RF signal up to around 400 MHz can be generated by a commonly used 14-bit DAC at the sampling rates of around 40 MHz with EVM less than 6.6%. This letter also presents a more feasible transmitter example having an IF stage with harmonic image extraction scheme and a typical RF upconversion stage.

  • Study on Expansion of Convolutional Compactors over Galois Field

    Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    706-712

    Convolutional compactors offer a promising technique of compacting test responses. In this study we expand the architecture of convolutional compactor onto a Galois field in order to improve compaction ratio as well as reduce X-masking probability, namely, the probability that an error is masked by unknown values. While each scan chain is independently connected by EOR gates in the conventional arrangement, the proposed scheme treats q signals as an element over GF(2q), and the connections are configured on the same field. We show the arrangement of the proposed compactors and the equivalent expression over GF(2). We then evaluate the effectiveness of the proposed expansion in terms of X-masking probability by simulations with uniform distribution of X-values, as well as reduction of hardware overheads. Furthermore, we evaluate a multi-weight arrangement of the proposed compactors for non-uniform X distributions.

  • Study on Test Data Reduction Combining Illinois Scan and Bit Flipping

    Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    720-725

    In this paper, we propose a scheme for test data reduction which uses broadcaster along with bit-flipping circuit. The proposed scheme can reduce test data without degrading the fault coverage of ATPG, and without requiring or modifying the arrangement of CUT. We theoretically analyze the test data size by the proposed scheme. The numerical examples obtained by the analysis and experimental results show that our scheme can effectively reduce test data if the care-bit rate is not so much low according to the number of scan chains. We also discuss the hybrid scheme of random-pattern-based flipping and single-input-based flipping.

  • Vehicular Diversity Flat Antenna at 900 MHz

    Hiroyuki ARAI  Hideki IWASHITA  Naohisa GOTO  

     
    PAPER

      Vol:
    E74-B No:10
      Page(s):
    3222-3226

    A flat diversity antenna, consisting of a disk loaded monopole antenna and four notch antennas composed in the same disk, was proposed as a vehicular antenna to reduce a fading effect of urban mobile telephone. The disk loaded monopole antenna is fed by a center probe and has four matching posts to realize the same pattern as that of a monopole antenna over a wide frequency range. This paper presents a new feed circuit for the flat diversity antenna, and measurement results of its input characteristics and radiation pattern when it is mounted on a vehicle. To verify the diversity effect of this antenna, we measured urban propagation characteristics at 900MHz, and compared the results with those of a space diversity antenna. We obtained almost the same characteristics with the flat diversity antenna as with the space diversity antenna.

  • Test Data Compression for Scan-Based BIST Aiming at 100x Compression Rate

    Masayuki ARAI  Satoshi FUKUMOTO  Kazuhiko IWASAKI  Tatsuru MATSUO  Takahisa HIRAIDE  Hideaki KONISHI  Michiaki EMORI  Takashi AIKYO  

     
    PAPER-Test Compression

      Vol:
    E91-D No:3
      Page(s):
    726-735

    We developed test data compression scheme for scan-based BIST, aiming to compress test stimuli and responses by more than 100 times. As scan-BIST architecture, we adopt BIST-Aided Scan Test (BAST), and combines four techniques: the invert-and-shift operation, run-length compression, scan address partitioning, and LFSR pre-shifting. Our scheme achieved a 100x compression rate in environments where Xs do not occur without reducing the fault coverage of the original ATPG vectors. Furthermore, we enhanced the masking logic to reduce data for X-masking so that test data is still compressed to 1/100 in a practical environment where Xs occur. We applied our scheme to five real VLSI chips, and the technique compressed the test data by 100x for scan-based BIST.

  • Mutual Coupling Matrix Estimation and Null Forming Methods for MBF Antennas

    Hiromitsu AOYAMA  Hiroyuki ARAI  

     
    PAPER

      Vol:
    E88-B No:6
      Page(s):
    2305-2312

    MBF (Microwave Beam Forming) antennas are beam forming antennas that perform pattern control in RF, for a low-cost design suitable for mobile terminals. An MBF antenna has only a single output port, since this antenna consists of an array antenna, microwave phase shifters, and a power combiner. Because of this simple configuration, MBF antennas cannot adopt conventional beam forming algorithms that require both phase and amplitude control, and signal observation of each antenna element. In this paper, mutual coupling matrix estimation and null forming methods are presented for MBF antennas. It is shown that the mutual coupling matrix can be estimated by changing the antenna weight instead of signal observation of each antenna element. It is also shown that phase-only null forming, including mutual coupling effect, can be done by the optimum phase perturbations. Numerical and experimental results show the performance of these algorithms.

  • Small Antennas: Downsizing Techniques and Its Index Factor

    Hiroyuki ARAI  

     
    INVITED PAPER

      Vol:
    E88-B No:5
      Page(s):
    1801-1808

    In this paper, we present the classification of small antennas based on statistical data. The three categories of downsizing methods are loading a matching circuit, changing the current path, and using dielectric/magnetic materials. These categories are explained using several examples. In this paper, we show that the miminum Q value as a fundamental limit defined by an infinitesimal dipole is effective for determining the index factor of small antennas. Radiation efficiency measurements for small antennas are also discussed.

  • Multimodal Learning of Geometry-Preserving Binary Codes for Semantic Image Retrieval Open Access

    Go IRIE  Hiroyuki ARAI  Yukinobu TANIGUCHI  

     
    INVITED PAPER

      Pubricized:
    2017/01/06
      Vol:
    E100-D No:4
      Page(s):
    600-609

    This paper presents an unsupervised approach to feature binary coding for efficient semantic image retrieval. Although the majority of the existing methods aim to preserve neighborhood structures of the feature space, semantically similar images are not always in such neighbors but are rather distributed in non-linear low-dimensional manifolds. Moreover, images are rarely alone on the Internet and are often surrounded by text data such as tags, attributes, and captions, which tend to carry rich semantic information about the images. On the basis of these observations, the approach presented in this paper aims at learning binary codes for semantic image retrieval using multimodal information sources while preserving the essential low-dimensional structures of the data distributions in the Hamming space. Specifically, after finding the low-dimensional structures of the data by using an unsupervised sparse coding technique, our approach learns a set of linear projections for binary coding by solving an optimization problem which is designed to jointly preserve the extracted data structures and multimodal data correlations between images and texts in the Hamming space as much as possible. We show that the joint optimization problem can readily be transformed into a generalized eigenproblem that can be efficiently solved. Extensive experiments demonstrate that our method yields significant performance gains over several existing methods.

  • Experimental Study of Jitter Effect on Digital Downconversion Receiver with Undersampling Scheme

    Minseok KIM  Aiko KIYONO  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER-Communications and Wireless Systems

      Vol:
    E88-D No:7
      Page(s):
    1430-1436

    Undersampling (or bandpass sampling) phase modulated signals directly at high frequency band, the harmful effects of the aperture jitter characteristics of ADCs (Analog-to-Digital converters) and sampling clock instability of the system can not be ignored. In communication systems the sampling jitter brings additional phase noise to the constellation pattern besides thermal noise, thus the BER (bit error rate) performance will be degraded. This paper examines the relationship between the input frequency to ADC and the sampling jitter in digital IF (Intermediate Frequency) downconversion receivers with undersampling scheme. This paper presents the measurement results with a real hardware prototype system as well as the computer simulation results with a theoretically modeled IF sampling receiver. We evaluated EVM (Error Vector Magnitude) in various clock jitter configurations with commonly used and reasonable cost ADCs of which sampling rates was 40 MHz. According to the results, the IF input frequencies of QPSK (16 QAM) signals were limited below around 290 (210) MHz for wireless LAN standard, and 730 (450) MHz for W-CDMA standard, respectively, in our best configuration.

  • A Rotating Mode Radial Line Slot Antenna Fed by a Cavity Resonator

    Seiji HOSONO  Jiro HIROKAWA  Makoto ANDO  Naohisa GOTO  Hiroyuki ARAI  

     
    PAPER-Antennas and Propagation

      Vol:
    E78-B No:3
      Page(s):
    407-413

    A radial line slot antenna (RLSA) is a high gain and high efficiency planar antenna proposed for DBS subscribers. Spirally arrayed slots are excited by a cylindrical wave with the rotational symmetry. In a small sized antenna where large slot coupling is adopted, aperture efficiency reduction due to rotational asymmetry associated with a spiral arrangement of the slots becomes notable. Authors proposed a RLSA with a concentric slot arrangement excited by a rotating mode in order to enhance the rotational symmetry. This is the first report of the normal operation of a rotating mode RLSA fed by a cavity resonator. The experiments confirm the basic operation of this novel antenna; the gain of 27.8dBi and the efficiency of 68% is measured at 11.85GHz for the RLSA with 0.24mφ.

  • Layout-Aware Fast Bridge/Open Test Generation by 2-Step Pattern Reordering

    Masayuki ARAI  Shingo INUYAMA  Kazuhiko IWASAKI  

     
    PAPER

      Vol:
    E101-A No:12
      Page(s):
    2262-2270

    As semiconductor device manufacturing technology evolves toward higher integration and reduced feature size, the gap between the defect level estimated at the design stage and that reported for fabricated devices has become wider, making it more difficult to control total manufacturing cost including test cost and cost for field failure. To estimate fault coverage more precisely considering occurrence probabilities of faults, we have proposed weighted fault coverage estimation based on critical area corresponding to each fault. Previously different fault models were handled separately; thus, pattern compression efficiency and runtime were not optimized. In this study, we propose a fast test pattern generation scheme that considers weighted bridge and open fault coverage in an integrated manner. The proposed scheme applies two-step test pattern generation, wherein test patterns generated at second step that target only bridge faults are reordered with a search window of fixed size, achieving O(n) computational complexity. Experimental results indicate that with 10% of the initial target fault size and a fixed, small window size, the proposed scheme achieves approximately 100 times runtime reduction when compared to simple greedy-based reordering, in exchange for about 5% pattern count increment.

  • A Free Access Mat by Tightly Coupled Patch Array for Short Range Wireless Access

    Kunsun EOM  Hiroyuki ARAI  

     
    PAPER

      Vol:
    E90-C No:12
      Page(s):
    2254-2260

    This paper presents a free access mat consisting of tightly coupled double layered microstrip resonator array to provide an easy access for devices in short range wireless communications. While in a conventional wireless access system the electromagnetic wave is radiated from a device to another through the free space using built-in antennas, the proposed wireless access system uses the free access mat to propagate the wave and the proximate coupling between the waveguide and the devices. The propagation loss in the mat is small, which is demonstrated by numerical simulation for basic elements of the free access mat. We also demonstrate small transmission loss including the coupling loss between dipole antennas and the free access mat. Finally experimental confirmation for all demonstrated characteristics is provided so that the free access mat is effective as a novel waveguide for a short range wireless access systems.

  • High Resolution DOA Estimation Using Unwrapped Phase Information of MUSIC-Based Noise Subspace

    Koichi ICHIGE  Kazuhiko SAITO  Hiroyuki ARAI  

     
    PAPER

      Vol:
    E91-A No:8
      Page(s):
    1990-1999

    This paper presents a high resolution Direction-Of-Arrival (DOA) estimation method using unwrapped phase information of MUSIC-based noise subspace. Superresolution DOA estimation methods such as MUSIC, Root-MUSIC and ESPRIT methods are paid great attention because of their brilliant properties in estimating DOAs of incident signals. Those methods achieve high accuracy in estimating DOAs in a good propagation environment, but would fail to estimate DOAs in severe environments like low Signal-to-Noise Ratio (SNR), small number of snapshots, or when incident waves are coming from close angles. In MUSIC method, its spectrum is calculated based on the absolute value of the inner product between array response and noise eigenvectors, means that MUSIC employs only the amplitude characteristics and does not use any phase characteristics. Recalling that phase characteristics plays an important role in signal and image processing, we expect that DOA estimation accuracy could be further improved using phase information in addition to MUSIC spectrum. This paper develops a procedure to obtain an accurate spectrum for DOA estimation using unwrapped and differentiated phase information of MUSIC-based noise subspace. Performance of the proposed method is evaluated through computer simulation in comparison with some conventional estimation methods.

  • Implementation of S-Parameter of Active Elements for FDTD Analysis

    Naobumi MICHISHITA  Takashi HIBINO  Hiroyuki ARAI  

     
    PAPER-Passive Circuits/Components

      Vol:
    E89-C No:12
      Page(s):
    1843-1850

    In the design of an active integrated antenna, it is necessary to analyze problems such as unwanted emissions or mutual coupling between elements. In this paper, we clarify the problems in implementing S-parameters for an FDTD analysis. Cubic spline interpolation is suitable for the construction of the S-parameter data. The implementation methods of terminal resistors and vias are examined. The proposed FDTD analysis becomes stable after correcting the discrete time lag in the formation of the incident wave. The validity of the proposed method is verified in its application to the low pass filter and the frequency tunable band pass filter.

  • Adaptive Impedance Matching System Using FPGA Processor for Efficient Control Algorithm

    Hirokazu OBA  Minseok KIM  Ryotaro TAMAKI  Hiroyuki ARAI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:8
      Page(s):
    1348-1355

    The input impedance of an antenna fluctuates because of various usage conditions, which causes a mismatch between an internal circuit and an antenna. An automatic matching system solves this problem, then this paper presents a reconfigurable impedance tuner that has a set of fixed capacitors controlled by switching p-i-n diodes. A fast control algorithm for selecting the appropriate conditions of an impedance tuner is proposed and mounted on FPGA to demonstrate the performance.

  • What are the Essential Cues for Understanding Spoken Language?

    Steven GREENBERG  Takayuki ARAI  

     
    INVITED PAPER

      Vol:
    E87-D No:5
      Page(s):
    1059-1070

    Classical models of speech recognition assume that a detailed, short-term analysis of the acoustic signal is essential for accurately decoding the speech signal and that this decoding process is rooted in the phonetic segment. This paper presents an alternative view, one in which the time scales required to accurately describe and model spoken language are both shorter and longer than the phonetic segment, and are inherently wedded to the syllable. The syllable reflects a singular property of the acoustic signal -- the modulation spectrum -- which provides a principled, quantitative framework to describe the process by which the listener proceeds from sound to meaning. The ability to understand spoken language (i.e., intelligibility) vitally depends on the integrity of the modulation spectrum within the core range of the syllable (3-10 Hz) and reflects the variation in syllable emphasis associated with the concept of prosodic prominence ("accent"). A model of spoken language is described in which the prosodic properties of the speech signal are embedded in the temporal dynamics associated with the syllable, a unit serving as the organizational interface among the various tiers of linguistic representation.

  • Implementation of FPGA Based Fast Unitary MUSIC DOA Estimator

    Minseok KIM  Koichi ICHIGE  Hiroyuki ARAI  

     
    PAPER-Wireless Network System Performances

      Vol:
    E87-C No:9
      Page(s):
    1485-1494

    DOA (Direction Of Arrival) estimation is a useful technique in various positioning applications including the DOA-based adaptive array antenna system. This paper presents a practical implementation of FPGA (Field Programmable Gate Array) based fast DOA estimator for wireless cellular basestation. This system incorporates spectral unitary MUSIC (MUltiple SIgnal Classification) algorithm, which is one of the representative super resolution DOA estimation techniques. This paper proposes a way of digital signal processor design suitable for FPGA and its real hardware implementation. In this system, all digital signal processing procedures are computed by the only fixed-point operation with finite word-length for fast processing and low power consumption. The performance will be assessed by hardware level simulations and experiments in a radio anechoic chamber.

  • Mutual Coupling Characteristics of Choke Loaded Patch Array Antenna

    Naobumi MICHISHITA  Hiroyuki ARAI  Yasuko KIMURA  

     
    LETTER-Antennas and Propagation

      Vol:
    E88-B No:1
      Page(s):
    411-415

    This paper describes the choke-loaded patch array antenna for use in the IMT-2000 repeater systems. The choke structure of the 4-element array is designed by means of an electromagnetic analysis. A high front-to-back (FB) ratio is required for suppressing mutual coupling in order to stop the oscillation caused by the interference waves between a transmitting and receiving antenna. The suppression of the FB ratio by a choke is limited in the case of the 16-element array because its side lobe level is large. In this paper, we examine the effect of suppressing the mutual coupling using a binomial array.

1-20hit(78hit)