The search functionality is under construction.

Author Search Result

[Author] Yusaku KANETA(2hit)

1-2hit
  • A Dynamically Reconfigurable FPGA-Based Pattern Matching Hardware for Subclasses of Regular Expressions

    Yusaku KANETA  Shingo YOSHIZAWA  Shin-ichi MINATO  Hiroki ARIMURA  Yoshikazu MIYANAGA  

     
    PAPER-Computer System

      Vol:
    E95-D No:7
      Page(s):
    1847-1857

    In this paper, we propose a novel architecture for large-scale regular expression matching, called dynamically reconfigurable bit-parallel NFA architecture (Dynamic BP-NFA), which allows dynamic loading of regular expressions on-the-fly as well as efficient pattern matching for fast data streams. This is the first dynamically reconfigurable hardware with guaranteed performance for the class of extended patterns, which is a subclass of regular expressions consisting of union of characters and its repeat. This class allows operators such as character classes, gaps, optional characters, and bounded and unbounded repeats of character classes. The key to our architecture is the use of bit-parallel pattern matching approach, in which the information of an input non-deterministic finite automaton (NFA) is first compactly encoded in bit-masks stored in a collection of registers and block RAMs. Then, the NFA is efficiently simulated by a fixed circuitry using bitwise Boolean and arithmetic operations consuming one input character per clock regardless of the actual contents of an input text. Experimental results showed that our hardwares for both string and extended patterns were comparable to previous dynamically reconfigurable hardwares in their performances.

  • Constant Time Enumeration of Subtrees with Exactly k Nodes in a Tree

    Kunihiro WASA  Yusaku KANETA  Takeaki UNO  Hiroki ARIMURA  

     
    PAPER-Graph Algorithms, Knowledge Discovery

      Vol:
    E97-D No:3
      Page(s):
    421-430

    By the motivation to discover patterns in massive structured data in the form of graphs and trees, we study a special case of the k-subtree enumeration problem with a tree of n nodes as an input graph, which is originally introduced by (Ferreira, Grossi, and Rizzi, ESA'11, 275-286, 2011) for general graphs. Based on reverse search technique (Avis and Fukuda, Discrete Appl. Math., vol.65, pp.21-46, 1996), we present the first constant delay enumeration algorithm that lists all k-subtrees of an input rooted tree in O(1) worst-case time per subtree. This result improves on the straightforward application of Ferreira et al.'s algorithm with O(k) amortized time per subtree when an input is restricted to tree. Finally, we discuss an application of our algorithm to a modification of the graph motif problem for trees.