The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Kunihiro WASA(4hit)

1-4hit
  • The Complexity of Induced Tree Reconfiguration Problems

    Kunihiro WASA  Katsuhisa YAMANAKA  Hiroki ARIMURA  

     
    PAPER

      Pubricized:
    2018/10/30
      Vol:
    E102-D No:3
      Page(s):
    464-469

    Given two feasible solutions A and B, a reconfiguration problem asks whether there exists a reconfiguration sequence (A0=A, A1,...,Aℓ=B) such that (i) A0,...,Aℓ are feasible solutions and (ii) we can obtain Ai from Ai-1 under the prescribed rule (the reconfiguration rule) for each i ∈ {1,...,ℓ}. In this paper, we address the reconfiguration problem for induced trees, where an induced tree is a connected and acyclic induced subgraph of an input graph. We consider the following two rules as the prescribed rules: Token Jumping: removing u from an induced tree and adding v to the tree, and Token Sliding: removing u from an induced tree and adding v adjacent to u to the tree, where u and v are vertices of an input graph. As the main results, we show that (I) the reconfiguration problemis PSPACE-complete even if the input graph is of bounded maximum degree, (II) the reconfiguration problem is W[1]-hard when parameterized by both the size of induced trees and the length of the reconfiguration sequence, and (III) there exists an FPT algorithm when the problem is parameterized by both the size of induced trees and the maximum degree of an input graph under Token Jumping and Token Sliding.

  • Max-Min 3-Dispersion Problems Open Access

    Takashi HORIYAMA  Shin-ichi NAKANO  Toshiki SAITOH  Koki SUETSUGU  Akira SUZUKI  Ryuhei UEHARA  Takeaki UNO  Kunihiro WASA  

     
    PAPER-Algorithms and Data Structures

      Pubricized:
    2021/03/19
      Vol:
    E104-A No:9
      Page(s):
    1101-1107

    Given a set P of n points on which facilities can be placed and an integer k, we want to place k facilities on some points so that the minimum distance between facilities is maximized. The problem is called the k-dispersion problem. In this paper, we consider the 3-dispersion problem when P is a set of points on a plane (2-dimensional space). Note that the 2-dispersion problem corresponds to the diameter problem. We give an O(n) time algorithm to solve the 3-dispersion problem in the L∞ metric, and an O(n) time algorithm to solve the 3-dispersion problem in the L1 metric. Also, we give an O(n2 log n) time algorithm to solve the 3-dispersion problem in the L2 metric.

  • Efficient Enumeration of Induced Matchings in a Graph without Cycles with Length Four

    Kazuhiro KURITA  Kunihiro WASA  Takeaki UNO  Hiroki ARIMURA  

     
    PAPER

      Vol:
    E101-A No:9
      Page(s):
    1383-1391

    In this study, we address a problem pertaining to the induced matching enumeration. An edge set M is an induced matching of a graph G=(V,E). The enumeration of matchings has been widely studied in literature; however, there few studies on induced matching. A straightforward algorithm takes O(Δ2) time for each solution that is coming from the time to generate a subproblem, where Δ is the maximum degree in an input graph. To generate a subproblem, an algorithm picks up an edge e and generates two graphs, the one is obtained by removing e from G, the other is obtained by removing e, adjacent edge to e, and edges adjacent to adjacent edge of e. Since this operation needs O(Δ2) time, a straightforward algorithm enumerates all induced matchings in O(Δ2) time per solution. We investigated local structures that enable us to generate subproblems within a short time and proved that the time complexity will be O(1) if the input graph is C4-free. A graph is C4-free if and only if none of its subgraphs have a cycle of length four.

  • Constant Time Enumeration of Subtrees with Exactly k Nodes in a Tree

    Kunihiro WASA  Yusaku KANETA  Takeaki UNO  Hiroki ARIMURA  

     
    PAPER-Graph Algorithms, Knowledge Discovery

      Vol:
    E97-D No:3
      Page(s):
    421-430

    By the motivation to discover patterns in massive structured data in the form of graphs and trees, we study a special case of the k-subtree enumeration problem with a tree of n nodes as an input graph, which is originally introduced by (Ferreira, Grossi, and Rizzi, ESA'11, 275-286, 2011) for general graphs. Based on reverse search technique (Avis and Fukuda, Discrete Appl. Math., vol.65, pp.21-46, 1996), we present the first constant delay enumeration algorithm that lists all k-subtrees of an input rooted tree in O(1) worst-case time per subtree. This result improves on the straightforward application of Ferreira et al.'s algorithm with O(k) amortized time per subtree when an input is restricted to tree. Finally, we discuss an application of our algorithm to a modification of the graph motif problem for trees.