The search functionality is under construction.

Author Search Result

[Author] Zheng ZHU(2hit)

1-2hit
  • Energy-Efficient Connectivity Re-Establishment in UASNs with Dumb Nodes

    Qiuli CHEN  Ming HE  Fei DAI  Chaozheng ZHU  

     
    LETTER-Dependable Computing

      Pubricized:
    2018/08/20
      Vol:
    E101-D No:11
      Page(s):
    2831-2835

    The changes of temperature, salinity and ocean current in underwater environment, have adverse effects on the communication range of sensors, and make them become temporary failure. These temporarily misbehaving sensors are called dumb nodes. In this paper, an energy-efficient connectivity re-establishment (EECR) scheme is proposed. It can reconstruct the topology of underwater acoustic sensor networks (UASNs) with the existing of dumb nodes. Due to the dynamic of underwater environment, the generation and recovery of dumb nodes also change dynamically, resulting in intermittent interruption of network topology. Therefore, a multi-band transmission mode for dumb nodes is designed firstly. It ensures that the current stored data of dumb nodes can be sent out in time. Subsequently, a connectivity re-establishment scheme of sub-nodes is designed. The topology reconstruction is adaptively implemented by changing the current transmission path. This scheme does't need to arrange the sleep nodes in advance. So it can reduce the message expenses and energy consumption greatly. Simulation results show that the proposed method has better network performance under the same conditions than the classical algorithms named LETC and A1. What's more, our method has a higher network throughput rate when the nodes' dumb behavior has a shorter duration.

  • Theoretical and Experimental Analysis of the Spurious Modes and Quality Factors for Dual-Mode AlN Lamb-Wave Resonators

    Haiyan SUN  Xingyu WANG  Zheng ZHU  Jicong ZHAO  

     
    PAPER-Ultrasonic Electronics

      Pubricized:
    2022/08/10
      Vol:
    E106-C No:3
      Page(s):
    76-83

    In this paper, the spurious modes and quality-factor (Q) values of the one-port dual-mode AlN lamb-wave resonators at 500-1000 MHz were studied by theoretical analysis and experimental verification. Through finite element analysis, we found that optimizing the width of the lateral reflection boundary at both ends of the resonator to reach the quarter wavelength (λ/4), which can improve its spectral purity and shift its resonant frequency. The designed resonators were micro-fabricated by using lithography processes on a 6-inch wafer. The measured results show that the spurious mode can be converted and dissipated, splitting into several longitudinal modes by optimizing the width of the lateral reflection boundary, which are consistent well with the theoretical analysis. Similarly, optimizing the interdigital transducer (IDT) width and number of IDT fingers can also suppress the resonator's spurious modes. In addition, it is found that there is no significant difference in the Qs value for the two modes of the dual-mode resonator with the narrow anchor and full anchor. The acoustic wave leaked from the anchor into the substrate produces a small displacement, and the energy is limited in the resonator. Compared to the resonator with Au IDTs, the resonator with Al IDTs can achieve a higher Q value due to its lower thermo-elastic damping loss. The measured results show the optimized dual-mode lamb-wave resonator can obtain Qs value of 2946.3 and 2881.4 at 730.6 MHz and 859.5 MHz, Qp values of 632.5 and 1407.6, effective electromechanical coupling coefficient (k2eff) of 0.73% and 0.11% respectively, and has excellent spectral purity simultaneously.