The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ANFIS(7hit)

1-7hit
  • Self Optimization Beam-Forming Null Control Based SINR Improvement

    Modick BASNET  Jeich MAR  

     
    PAPER-Measurement Technology

      Vol:
    E99-A No:5
      Page(s):
    963-972

    In this paper, a self optimization beamforming null control (SOBNC) scheme is proposed. There is a need of maintaining signal to interference plus noise ratio (SINR) threshold to control modulation and coding schemes (MCS) in recent technologies like Wi-Fi, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A). Selection of MCS depends on the SINR threshold that allows maintaining key performance index (KPI) like block error rate (BLER), bit error rate (BER) and throughput at certain level. The SOBNC is used to control the antenna pattern for SINR estimation and improve the SINR performance of the wireless communication systems. The nulling comes with a price; if wider nulls are introduced, i.e. more number of nulls are used, the 3dB beam-width and peak side lobe level (SLL) in antenna pattern changes critically. This paper proposes a method which automatically controls the number of nulls in the antenna pattern as per the changing environment based on adaptive-network based fuzzy interference system (ANFIS) to maintain output SINR level higher or equal to the required threshold. Finally, simulation results show a performance superiority of the proposed SOBNC compared with minimum mean square error (MMSE) based adaptive nulling control algorithm and conventional fixed null scheme.

  • Intelligent Data Rate Control in Cognitive Mobile Heterogeneous Networks

    Jeich MAR  Hsiao-Chen NIEN  Jen-Chia CHENG  

     
    PAPER

      Vol:
    E95-B No:4
      Page(s):
    1161-1169

    An adaptive rate controller (ARC) based on an adaptive neural fuzzy inference system (ANFIS) is designed to autonomously adjust the data rate of a mobile heterogeneous network to adapt to the changing traffic load and the user speed for multimedia call services. The effect of user speed on the handoff rate is considered. Through simulations, it has been demonstrated that the ANFIS-ARC is able to maintain new call blocking probability and handoff failure probability of the mobile heterogeneous network below a prescribed low level over different user speeds and new call origination rates while optimizing the average throughput. It has also been shown that the mobile cognitive wireless network with the proposed CS-ANFIS-ARC protocol can support more traffic load than neural fuzzy call-admission and rate controller (NFCRC) protocol.

  • Channel Estimation Based on Adaptive Neuro-Fuzzy Inference System in OFDM

    M. Nuri SEYMAN   Necmi TAPINAR  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2426-2430

    In this letter we purpose adaptive neuro-fuzzy inference system (ANFIS) for channel estimation in orthogonal frequency division multiplexing (OFDM) systems. To evaluate the performance of this estimator, we compare the ANFIS with least square (LS) algorithm, minimum mean square error (MMSE) algorithm by using bit error rate (BER) and mean square error (MSE) criterias. According to computer simulations the performance of ANFIS has better performance than LS algorithm and close to MMSE algorithm. Besides there is unnecessity to send pilot when used the ANFIS.

  • An Optimal Load Balancing Method for the Web-Server Cluster Based on the ANFIS Model

    Ilseok HAN  Wanyoung KIM  Hagbae KIM  

     
    LETTER-Computer Systems

      Vol:
    E88-D No:3
      Page(s):
    652-653

    This paper presents an optimal load balancing algorithm based on both of the ANFIS (Adaptive Neuro-Fuzzy Inference System) modeling and the FIS (Fuzzy Inference System) for the local status of real servers. It also shows the substantial benefits such as the removal of load-scheduling overhead, QoS (Quality of Service) provisioning and providing highly available servers, provided by the suggested method.

  • A Resource Allocation Scheme Using Adaptive-Network-Based Fuzzy Control for Mobile Multimedia Networks

    Yih-Shen CHEN  Chung-Ju CHANG  Fang-Ching REN  

     
    PAPER-Wireless Communication Technology

      Vol:
    E85-B No:2
      Page(s):
    502-513

    Sophisticated and robust resource management is an essential issue in future wireless systems which will provide a variety of application services. In this paper, we employ an adaptive-network-based fuzzy inference system (ANFIS) to control the resource allocation for mobile multimedia networks. ANFIS, possessing the advantages of expert knowledge of fuzzy logic system and learning capability of neural networks, can provide a systematic approach to finding appropriate parameters for the Sugeno fuzzy model. The fuzzy resource allocation controller (FRAC) is designed in a two-layer architecture and selects properly the capacity requirement of new call request, the capacity reservation for future handoffs, and the air interface performance as input linguistic variables. Therefore, the statistical multiplexing gain of mobile multimedia networks can be maximized in the FRAC. Simulation results indicate that the proposed FRAC can keep the handoff call blocking rate low without jeopardizing the new call blocking rate. Also, the FRAC can indeed guarantee quality of service (QoS) contracts and achieve higher system performance according to network dynamics, compared with the guard channel scheme and ExpectedMax strategy.

  • A New Transformed Input-Domain ANFIS for Highly Nonlinear System Modeling and Prediction

    Elsaid Mohamed ABDELRAHIM  Takashi YAHAGI  

     
    LETTER-Nonlinear Signal Processing

      Vol:
    E84-A No:8
      Page(s):
    1981-1985

    In two- or more-dimensional systems where the components of the sample data are strongly correlated, it is not proper to divide the input space into several subspaces without considering the correlation. In this paper, we propose the usage of the method of principal component in order to uncorrelate and remove any redundancy from the input space of the adaptive neuro-fuzzy inference system (ANFIS). This leads to an effective partition of the input space to the fuzzy model and significantly reduces the modeling error. A computer simulation for two frequently used benchmark problems shows that ANFIS with the uncorrelation process performs better than the original ANFIS under the same conditions.

  • Partitioning of Linearly Transformed Input Space in Adaptive Network Based Fuzzy Inference System

    Jeyoung RYU  Sangchul WON  

     
    LETTER-Welfare Engineering

      Vol:
    E84-D No:1
      Page(s):
    213-216

    This paper presents a new effective partitioning technique of linearly transformed input space in Adaptive Network based Fuzzy Inference System (ANFIS). The ANFIS is the fuzzy system with a hybrid parameter learning method, which is composed of a gradient and a least square method. The input space can be partitioned flexibly using new modeling inputs, which are the weighted linear combination of the original inputs by the proposed input partitioning technique, thus, the parameter learning time and the modeling error of ANFIS can be reduced. The simulation result illustrates the effectiveness of the proposed technique.