The search functionality is under construction.

Keyword Search Result

[Keyword] ARM(264hit)

261-264hit(264hit)

  • Relaxation-Based Circuit Simulation Techniques in the Frequency Domain

    Hiroaki MAKINO  Hideki ASAI  

     
    PAPER-Modeling and Simulation

      Vol:
    E76-A No:4
      Page(s):
    626-630

    This paper describes the novel relaxation-based algorithm for the harmonic analysis of nonlinear circuits. First, we present Iterated Spectrum Analysis based on harmonic balance method, where the harmonic balance method is applied to every node independently. As a result, we can avoid dealing with large scale Jacobian matrices and reduce the total simulation time, compared with the conventional method based on Galerkin's procedure or the harmonic balance method. Next, we define the frequency domain latency. Furthermore, we refer to the possibility for exploitation of three types of latency, i.e., relaxation iteration latency, frequency domain latency and Newton iteration latency. And we propose the multirate-sampling technique based on the consideration of the frequency domain latency. Finally, we apply the present technique to the simple analog circuit simulation and verify its availability for the harmonic analysis.

  • An Extension to the Overfitting Lattice Filter for ARMA Parameter Estimation with Additive Noise

    Marco A. Amaral HENRIQUES  Md. Kamrul HASAN  Takashi YAHAGI  

     
    LETTER-Speech

      Vol:
    E76-A No:3
      Page(s):
    480-482

    This letter extends the overfitting lattice filter for ARMA parameter estimation with additive noise proposed by Sun and Yahagi. A new way of calculating the lattice parameters is proposed, making their computation truly recursive. This simplifies the method in Ref.(1), and makes it suitable to the parameter estimation of high-order systems.

  • Nonlinear Optical Properties of Organics in Comparison with Semiconductors and Dielectrics

    Takayoshi KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-A No:1
      Page(s):
    38-45

    The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)=X(n)/(X(l))n both for the second (n=2) and third-order (n=3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.

  • Nonlinear Optical Properties of Organics in Comparison with Semiconductors and Dielectrics

    Takayoshi KOBAYASHI  

     
    INVITED PAPER

      Vol:
    E75-C No:1
      Page(s):
    36-43

    The nonlinear optical properties of organics with unsaturated bonds were compared with those of inorganics including semiconductors and dielectrics. Because of the mesomeric effect, namely quantum mechanical resonance effect among configurations, aromatic molecules and polymers have larger optical nonlinear parameters defined as δ(n)X(n)/(X(1))n both for the second (n2) and third-order (n3) nonlinearities. Experimental results of ultrafast nonlinear response of conjugated polymers, especially polydiacetylenes, were described and a model is proposed to explain the relaxation processes of photoexcitations in the conjugated polymers. Applying the model constructed on the basis of the extensive experimental study, we propose model polymers to obtain ultrafast resonant optical nonlinearity.

261-264hit(264hit)