The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] ATI(18690hit)

4861-4880hit(18690hit)

  • Dynamic Consolidation of Virtual Machines in Cloud Datacenters

    Han-Peng JIANG  Ming-Lung WENG  Wei-Mei CHEN  

     
    LETTER

      Vol:
    E97-D No:7
      Page(s):
    1727-1730

    Now that the subject of green computing is receiving a lot of attention, the energy consumption of datacenters has emerged as a significant issue. Consolidation of Virtual Machines (VMs) reduces the energy consumption since VM live migration not only optimizes VM placement, but also switches idle nodes to sleep mode. However, VM migration may negatively impact the performance of the system and lead to violations in SLA (Service Level Agreement) requirements between end users and cloud providers. In this study, we propose a VM consolidation mechanism that reduces the energy consumption of datacenters, eliminates unnecessary migrations, and minimizes the SLA violations. Compared to previous studies, the proposed policy shows a reduction of 2% to 3% in energy consumption, 13% to 41% in VM migration frequency, and 15% to 50% in SLA violations.

  • Quasi-Linear Support Vector Machine for Nonlinear Classification

    Bo ZHOU  Benhui CHEN  Jinglu HU  

     
    PAPER-Neural Networks and Bioengineering

      Vol:
    E97-A No:7
      Page(s):
    1587-1594

    This paper proposes a so called quasi-linear support vector machine (SVM), which is an SVM with a composite quasi-linear kernel. In the quasi-linear SVM model, the nonlinear separation hyperplane is approximated by multiple local linear models with interpolation. Instead of building multiple local SVM models separately, the quasi-linear SVM realizes the multi local linear model approach in the kernel level. That is, it is built exactly in the same way as a single SVM model, by composing a quasi-linear kernel. A guided partitioning method is proposed to obtain the local partitions for the composition of quasi-linear kernel function. Experiment results on artificial data and benchmark datasets show that the proposed method is effective and improves classification performances.

  • Multiple Gaussian Mixture Models for Image Registration

    Peng YE  Fang LIU  Zhiyong ZHAO  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E97-D No:7
      Page(s):
    1927-1929

    Gaussian mixture model (GMM) has recently been applied for image registration given its robustness and efficiency. However, in previous GMM methods, all the feature points are treated identically. By incorporating local class features, this letter proposes a multiple Gaussian mixture models (M-GMM) method for image registration. The proposed method can achieve higher accuracy results with less registration time. Experiments on real image pairs further proved the superiority of the proposed method.

  • Optical Network Management System for Instant Provisioning of QoS-Aware Path and Its Software Prototyping with OpenFlow

    Masashi TAKADA  Akira FUKUSHIMA  Yosuke TANIGAWA  Hideki TODE  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1313-1324

    In conventional networks, service control function and network control function work independently. Therefore, stereotypical services are provided via fixed routes or selected routes in advance. Recently, advanced network services have been provided by assortment of distributed components at low cost. Furthermore, service platform, which unifies componentized network control and service control in order to provide advanced services with flexibility and stability, has attracted attention. In near future, network management system (NMS) is promising, which replies an answer quickly for such advanced service platforms when route setting is requested with some parameters: quality of service (QoS), source and destination addresses, cost (money) and so on. In addition, the NMS is required to provide routes exploiting functions such as path computation element (PCE) actually. This paper proposes scalable network architecture that can quickly reply an answer by pre-computing candidate routes when route setting is requested to a control unit like an Autonomous System (AS). Proposed architecture can manage network resources scalably, and answer the availability of the requested QoS-aware path settings instantaneously for the forthcoming service platform that finds an adequate combination of a server and a route. In the proposed method, hierarchical databases are established to manage the information related to optical network solution and their data are updated at fewer times by discretized states and their boundaries with some margin. Moreover, with multiple and overlapped overlay, it pre-computes multiple candidate routes with different characteristics like available bandwidth and the number of hops, latency, BER (bit error rate), before route set-up request comes. We present simulation results to verify the benefits of our proposed system. Then, we implement its prototype using OpenFlow, and evaluate its effectiveness in the experimental environment.

  • Numerical Study on Fabrication Tolerance of Half-Ridge InP Polarization Converters Open Access

    Masaru ZAITSU  Takuo TANEMURA  Yoshiaki NAKANO  

     
    INVITED PAPER

      Vol:
    E97-C No:7
      Page(s):
    731-735

    Integrated InP polarization converters based on half-ridge structure are studied numerically. We demonstrate that the fabrication tolerance of the half-ridge structure can be extended significantly by introducing a slope at the ridge side and optimizing the thickness of the residual InGaAsP layer. High polarization conversion over 90% is achieved with the broad range of the waveguide width from 705 to 915~nm, corresponding to a factor-of-two or larger improvement in the fabrication tolerance compared with that of the conventional polarization converters. Finally we present a simple fabrication procedure of this newly proposed structure, where the thickness of the residual InGaAsP layer is controlled precisely by using a thin etch-stop layer.

  • Mean Polynomial Kernel and Its Application to Vector Sequence Recognition

    Raissa RELATOR  Yoshihiro HIROHASHI  Eisuke ITO  Tsuyoshi KATO  

     
    PAPER-Pattern Recognition

      Vol:
    E97-D No:7
      Page(s):
    1855-1863

    Classification tasks in computer vision and brain-computer interface research have presented several applications such as biometrics and cognitive training. However, like in any other discipline, determining suitable representation of data has been challenging, and recent approaches have deviated from the familiar form of one vector for each data sample. This paper considers a kernel between vector sets, the mean polynomial kernel, motivated by recent studies where data are approximated by linear subspaces, in particular, methods that were formulated on Grassmann manifolds. This kernel takes a more general approach given that it can also support input data that can be modeled as a vector sequence, and not necessarily requiring it to be a linear subspace. We discuss how the kernel can be associated with the Projection kernel, a Grassmann kernel. Experimental results using face image sequences and physiological signal data show that the mean polynomial kernel surpasses existing subspace-based methods on Grassmann manifolds in terms of predictive performance and efficiency.

  • Maximum-Likelihood Acquisition of Spread-Spectrum Signals in Frequency-Selective Fading Channels

    Oh-Soon SHIN  

     
    LETTER-Spread Spectrum Technologies and Applications

      Vol:
    E97-A No:7
      Page(s):
    1642-1645

    A maximum-likelihood code acquisition scheme is investigated for frequency-selective fading channels with an emphasis on the decision strategies. Using the maximum-likelihood estimation technique, we first derive an optimal decision rule, which is optimal in the viewpoint of probability of detection. Based on the derived optimal decision rule, a practical and simple decision rule is also developed, and its performance is assessed for both single dwell and double dwell acquisition systems. Simulation results demonstrate that the proposed acquisition scheme significantly outperforms the previously proposed schemes in frequency-selective fading channels.

  • Scene Text Character Recognition Using Spatiality Embedded Dictionary

    Song GAO  Chunheng WANG  Baihua XIAO  Cunzhao SHI  Wen ZHOU  Zhong ZHANG  

     
    LETTER-Image Recognition, Computer Vision

      Vol:
    E97-D No:7
      Page(s):
    1942-1946

    This paper tries to model spatial layout beyond the traditional spatial pyramid (SP) in the coding/pooling scheme for scene text character recognition. Specifically, we propose a novel method to build a dictionary called spatiality embedded dictionary (SED) in which each codeword represents a particular character stroke and is associated with a local response region. The promising results outperform other state-of-the-art algorithms.

  • Fundamental Locally One-Dimensional Method for 3-D Thermal Simulation

    Wei CHOON TAY  Eng LEONG TAN  Ding YU HEH  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    636-644

    This paper presents a fundamental locally one-dimensional (FLOD) method for 3-D thermal simulation. We first propose a locally one-dimensional (LOD) method for heat transfer equation within general inhomogeneous media. The proposed LOD method is then cast into compact form and formulated into the FLOD method with operator-free right-hand-side (RHS), which leads to computationally efficient update equations. Memory storage requirements and boundary conditions for both FLOD and LOD methods are detailed and compared. Stability analysis by means of analyzing the eigenvalues of amplification matrix substantiates the stability of the FLOD method. Additionally, the potential instability of the Douglas Gunn (DG) alternating-direction-implicit (ADI) method for inhomogeneous media is demonstrated. Numerical experiments justify the gain achieved in the overall efficiency for FLOD over LOD, DG-ADI and explicit methods. Furthermore, the relative maximum error of the FLOD method illustrates good trade-off between accuracy and efficiency.

  • Parallel Computation of Complex Antennas around the Coated Object Using Iterative Vector Fields Technique

    Ying YAN  Xunwang ZHAO  Yu ZHANG  Changhong LIANG  Zhewang MA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    661-669

    In this paper, a novel hybrid technique for analyzing complex antennas around the coated object is proposed, which is termed as “iterative vector fields with Physical Optics (PO)”. A closed box is used to enclose the antennas and the complex field vectors on the box' surfaces can then be obtained using Huygens principle. The equivalent electromagnetic currents on Huygens surfaces are computed by Higher-order Method of Moments (HOB-MoM) and the fields scattered from the coated object are calculated by PO method. In addition, the parallel technique based on Message Passing Interface (MPI) and Scalable Linear Algebra Package (ScaLAPACK) is employed so as to accelerate the computation. Numerical examples are presented to validate and to show the effectiveness of the proposed method on solving the practical engineering problem.

  • Analysis of Electromagnetic Scattering from a Conducting Spherical Shell by the 3D Point Matching Method with Mode Expansion

    Shinichiro OHNUKI  Kenichiro KOBAYASHI  Seiya KISHIMOTO  Tsuneki YAMASAKI  

     
    BRIEF PAPER

      Vol:
    E97-C No:7
      Page(s):
    714-717

    Electromagnetic scattering problems of canonical 2D structures can be analyzed with a high degree of accuracy by using the point matching method with mode expansion. In this paper, we will extend our previous method to 3D electromagnetic scattering problems and investigate the radar cross section of spherical shells and the computational accuracy.

  • All-Optical Wavelength-Shift-Free NRZ-DPSK to RZ-DPSK Format Conversion with Pulsewidth Tunability by an SOA-Based Switch

    Gazi Mohammad SHARIF  Quang NGUYEN-THE  Motoharu MATSUURA  Naoto KISHI  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    755-761

    We demonstrate an all-optical non-return-to-zero differential phase shift keying (NRZ-DPSK) to return-to-zero differential phase shift keying (RZ-DPSK) format conversion with wavelength-shift-free and pulsewidth tunable operations by using a semiconductor optical amplifier (SOA)-based switch. An NRZ-DPSK signal is injected into the SOA-based switch with an RZ clock, and is converted to RZ-DPSK signal owing to the nonlinear effects inside the SOA. In this scheme, the wavelength of the converted RZ-DPSK signal is maintained as the original wavelength of the input NRZ-DPSK signal during the format conversion. Moreover, the pulsewidth of the converted signal is tunable in a wider operating range from 30 to 60 ps. The format conversion with pulsewidth tunability is based on cross-phase modulation (XPM) and cross-gain modulation (XGM) effects in the SOA. The clear eye diagrams, optical spectra and the bit-error-rate (BER) characteristics show high conversion performance with the wide pulsewidth tuning range. For all cases of the converted RZ-DPSK signal with different pulsewidths, the receiver sensitivities at a BER of 10$^{-9}$ for the converted RZ-DPSK signal were 0.7 to 1.5 dB higher than the receiver sensitivity of the input NRZ-DPSK signal.

  • Optical Flip-Flop Operation in Orthogonal Polarization States with a Single Semiconductor Optical Amplifier and Two Feedback Loops

    Kenta TAKASE  Rie UEHARA  Nobuo GOTO  Shin-ichiro YANAGIYA  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    767-772

    An optical flip-flop circuit with a single semiconductor optical amplifier (SOA) using two orthogonal polarization states is proposed. The optical set / reset input and output signals are at a single wavelength. The flip-flop circuit consists of an SOA, a polarization combiner, a polarization splitter, two directional couplers, and two phase shifters. No continuous light source is required to operate the circuit. In this paper, we theoretically analyze the operation performance. Polarization dependence in SOA is considered in the analysis at a single wavelength operation, and numerically simulated results are presented. We confirm that the flip-flop circuit with a feedback-loop length of 15~mm can be operated at switching time of around 3~ns by 1~ns set / reset pulses. The flip-flop performance is discussed from viewpoints of transient overshoot and contrast at the steady on-off states.

  • Parallel Use of Dispersion Devices for Resolution Improvement of Optical Quantization at High Sampling Rate

    Tomotaka NAGASHIMA  Takema SATOH  Petre CATALIN  Kazuyoshi ITOH  Tsuyoshi KONISHI  

     
    PAPER

      Vol:
    E97-C No:7
      Page(s):
    787-794

    We investigate resolution improvement in optical quantization with keeping high sampling rate performance in optical sampling. Since our optical quantization approach uses power-to-wavelength conversion based on soliton self-frequency shift, a spectral compression can improve resolution in exchange for sampling rate degradation. In this work, we propose a different approach for resolution improvement by parallel use of dispersion devices so as to avoid sampling rate degradation. Additional use of different dispersion devices can assist the wavelength separation ability of an original dispersion device. We demonstrate the principle of resolution improvement in 3 bit optical quantization. Simulation results based on experimental evaluation of 3 bit optical quantization system shows 4 bit optical quantization is achieved by parallel use of dispersion devices in 3 bit optical quantization system. The maximum differential non-linearity (DNL) and integral non-linearity (INL) are 0.49 least significant bit (LSB) and 0.50 LSB, respectively. The effective number of bits (ENOB) estimated to 3.62 bit.

  • Unified Analysis of ICI-Cancelled OFDM Systems in Doubly-Selective Channels

    Chi KUO  Jin-Fu CHANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E97-B No:7
      Page(s):
    1435-1448

    The effect of transceiver impairments (consisting of frequency offset, phase noise and doubly-selective channel) is a key factor for determining performance of an orthogonal frequency-division multiplexing (OFDM) system since the transceiver impairments trigger intercarrier interference (ICI). These impairments are well known and have been investigated separately in the past. However, these impairments usually arise concurrently and should be jointly considered from the perspectives of both receiver design and system evaluation. In this research, impact of these impairments on an OFDM system is jointly analyzed and the result degenerates to the special case where only a specific impairment is present. A mitigation method aided by segment-by-segment time-domain interpolation (STI) is then proposed following the analysis. STI is general, and its weights can be specified according to the interpolation method and system requirements. Computer simulation is used to validate the analysis and to compare the performance of the proposed method with those of other proposals.

  • Phased Array Antenna Beam Steering Scheme for Future Wireless Access Systems Using Radio-over-Fiber Technique

    Masayuki OISHI  Yoshihiro NISHIKAWA  Kosuke NISHIMURA  Keiji TANAKA  Shigeyuki AKIBA  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1281-1289

    This paper proposes a simple and practical scheme to decide the direction of a phased array antenna beam in wireless access systems using Radio-over-Fiber (RoF) technique. The feasibility of the proposed scheme is confirmed by the optical and wireless transmission experiments using 2GHz RoF signals. In addition, two-dimensional steering operation in the millimeter-wave band is demonstrated for targeting future high-speed wireless communication systems. The required system parameters for practical use are also provided by investigating the induced transmission penalties. The proposed detection scheme is applicable to two-dimensional antenna beam steering in the millimeter-wave band by properly designing the fiber length and wavelength variable range.

  • Secure Mobility Management Application Capable of Fast Layer 3 Handovers for MIPv6-Non-Aware Mobile Hosts

    Younchan JUNG  Marnel PERADILLA  J. William ATWOOD  

     
    PAPER-Network

      Vol:
    E97-B No:7
      Page(s):
    1375-1384

    Currently, a correspondent host will have difficulties in establishing a direct session path to a mobile host because of the partial deployment of MIPv6-aware mobile hosts. Even MIPv6-aware hosts will spend up to several seconds to obtain the new location of the mobile host during Layer 3 (L3) handover. This paper proposes an application-level mobility management scheme that can solve the problems related to the increase of Internet traffic end-to-end delay under the current situation that most of the mobile devices are MIPv6-non-aware. The proposed Secure Mobility Management Application (SMMA) enables the updates of care-of address to be faster and more reliable even when L3 handovers occur frequently. SMMA uses a cross-layer approach for session mobility management with the support of Binding Updates to the home agent via IPSec tunnels. The main feature of SMMA is to handle the session-related mobility management for which operation starts just after the completion of name resolution as a pre-call mobility management, which operates in conjunction with the DNS. Our session-related mobility management introduces three new signaling messages: SS-Create for session state creation, SS-Refresh for session state extension and SS-Renewal for updating new care-of address at the mid-session. Finally, this paper analyzes the work load imposed on a mobile host to create a session state and the security strength of the SS-Renewal message, which depends on the key size used.

  • Decomposing Approach for Error Vectors of k-Error Linear Complexity of Certain Periodic Sequences

    Ming SU  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:7
      Page(s):
    1542-1555

    The k-error linear complexity of periodic sequences is an important security index of stream cipher systems. By using an interesting decomposing approach, we investigate the intrinsic structure for the set of 2n-periodic binary sequences with fixed complexity measures. For k ≤ 4, we construct the complete set of error vectors that give the k-error linear complexity. As auxiliary results we obtain the counting functions of the k-error linear complexity of 2n-periodic binary sequences for k ≤ 4, as well as the expectations of the k-error linear complexity of a random sequence for k ≤ 3. Moreover, we study the 2t-error linear complexity of the set of 2n-periodic binary sequences with some fixed linear complexity L, where t < n-1 and the Hamming weight of the binary representation of 2n-L is t. Also, we extend some results to pn-periodic sequences over Fp. Finally, we discuss some potential applications.

  • Fundamental LOD-BOR-FDTD Method for the Analysis of Plasmonic Devices

    Jun SHIBAYAMA  Takuto OIKAWA  Tomoyuki HIRANO  Junji YAMAUCHI  Hisamatsu NAKANO  

     
    BRIEF PAPER

      Vol:
    E97-C No:7
      Page(s):
    707-709

    The body-of-revolution finite-difference time-domain method (BOR-FDTD) based on the locally one-dimensional (LOD) scheme is extended to a frequency-dependent version for the analysis of the Drude and Drude-Lorentz models. The formulation is simplified with a fundamental scheme, in which the number of arithmetic operations is reduced by 40% in the right-hand sides of the resultant equations. Efficiency improvement of the LOD-BOR-FDTD is discussed through the analysis of a plasmonic rod waveguide and a plasmonic grating.

  • Analysis of Side-Channel Attack Based on Information Theory

    Hiroaki MIZUNO  Keisuke IWAI  Hidema TANAKA  Takakazu KUROKAWA  

     
    PAPER-Cryptography and Information Security

      Vol:
    E97-A No:7
      Page(s):
    1523-1532

    This paper presents a new information-theoretical evaluation method, for the resistance of cryptographic implementation against side-channel attacks. In conventional methods, the results of actual attacks have been often used empirically. However, these experimental methods have some problems. In the proposed method, a side-channel attack is regarded as a communication channel model. Then, a new evaluation index “the amount of leakage information” can be defined. The upper-bound of this index is estimated as the channel capacity. The proposed evaluation using this index can avoid the problems of conventional methods. Consequently, the proposed method provides some benefits: (1) It provides rationale for evaluation; (2) It enables execution of numerical evaluation and mutual evaluation among several kinds of countermeasures. This research achieves a unification of evaluation indexes for resistance against side-channel attack. This paper applies the proposed method to correlation power analysis against implementations of stream cipher Enocoro-128 v2. As a result, we confirmed its effectiveness.

4861-4880hit(18690hit)