The search functionality is under construction.

Keyword Search Result

[Keyword] EPC(9hit)

1-9hit
  • New Pseudo-Random Number Generator for EPC Gen2

    Hiroshi NOMAGUCHI  Chunhua SU  Atsuko MIYAJI  

     
    PAPER-Cryptographic Techniques

      Pubricized:
    2019/11/14
      Vol:
    E103-D No:2
      Page(s):
    292-298

    RFID enable applications are ubiquitous in our society, especially become more and more important as IoT management rises. Meanwhile, the concern of security and privacy of RFID is also increasing. The pseudorandom number generator is one of the core primitives to implement RFID security. Therefore, it is necessary to design and implement a secure and robust pseudo-random number generator (PRNG) for current RFID tag. In this paper, we study the security of light-weight PRNGs for EPC Gen2 RFID tag which is an EPC Global standard. For this reason, we have analyzed and improved the existing research at IEEE TrustCom 2017 and proposed a model using external random numbers. However, because the previous model uses external random numbers, the speed has a problem depending on the generation speed of external random numbers. In order to solve this problem, we developed a pseudorandom number generator that does not use external random numbers. This model consists of LFSR, NLFSR and SLFSR. Safety is achieved by using nonlinear processing such as multiplication and logical multiplication on the Galois field. The cycle achieves a cycle longer than the key length by effectively combining a plurality of LFSR and the like. We show that our proposal PRNG has good randomness and passed the NIST randomness test. We also shows that it is resistant to identification attacks and GD attacks.

  • An Approach for Virtual Network Function Deployment Based on Pooling in vEPC

    Quan YUAN  Hongbo TANG  Yu ZHAO  Xiaolei WANG  

     
    PAPER-Network

      Pubricized:
    2017/12/08
      Vol:
    E101-B No:6
      Page(s):
    1398-1410

    Network function virtualization improves the flexibility of infrastructure resource allocation but the application of commodity facilities arouses new challenges for systematic reliability. To meet the carrier-class reliability demanded from the 5G mobile core, several studies have tackled backup schemes for the virtual network function deployment. However, the existing backup schemes usually sacrifice the efficiency of resource allocation and prevent the sharing of infrastructure resources. To solve the dilemma of balancing the high level demands of reliability and resource allocation in mobile networks, this paper proposes an approach for the problem of pooling deployment of virtualized network functions in virtual EPC network. First, taking pooling of VNFs into account, we design a virtual network topology for virtual EPC. Second, a node-splitting algorithm is proposed to make best use of substrate network resources. Finally, we realize the dynamic adjustment of pooling across different domains. Compared to the conventional virtual topology design and mapping method (JTDM), this approach can achieve fine-grained management and overall scheduling of node resources; guarantee systematic reliability and optimize global view of network. It is proven by a network topology instance provided by SNDlib that the approach can reduce total resource cost of the virtual network and increase the ratio of request acceptance while satisfy the high-demand reliability of the system.

  • vEPC Optimal Resource Assignment Method for Accommodating M2M Communications

    Kazuki TANABE  Hiroki NAKAYAMA  Tsunemasa HAYASHI  Katsunori YAMAOKA  

     
    PAPER

      Pubricized:
    2017/09/19
      Vol:
    E101-B No:3
      Page(s):
    637-647

    The 5G mobile network environment has been studied and developed, and the concept of a vEPC (Virtualized Evolved Packet Core) has been introduced as a framework for Network Functions Virtualization (NFV). Machine-to-Machine (M2M) communications in 5G networks require much faster response than are possible in 4G networks. However, if both the control plane (C-plane) and the data plane (D-plane) functions of the EPC are migrated into a single vEPC server, M2M devices and other user equipments (UEs) share the same resources. To accommodate delay-sensitive M2M sessions in vEPC networks, not only signaling performance on the C-plane but also packet processing performance on the D-plane must be optimized. In this paper, we propose a method for optimizing resource assignment of C-plane and D-plane Virtualized Network Functions (VNFs) in a vEPC server, called the vEPC-ORA method. We distinguish the communications of M2M devices and smartphones and model the vEPC server by using queueing theory. Numerical analysis of optimal resource assignment shows that our proposed method minimizes the blocking rates of M2M sessions and smartphone sessions. We also confirmed that the mean packet processing time is kept within the allowable delay for each communication type, as long as the vEPC server has enough VM resources. Moreover, we study a resource granularity effect on the optimal resource assignment. Numerical analysis under a fixed number of hardware resources of MME and S/P-GW is done for various resource granularities of the vEPC server. The evaluation results of numerical analyses showed that the vEPC-ORA method derives the optimal resource assignment in practical calculation times.

  • Performance Evaluation of Virtualized LTE-EPC Data Plane with MPLS Core Using PPBP Machine-to-Machine Traffic

    Hussien M. HUSSIEN  Hussein A. ELSAYED  

     
    PAPER

      Vol:
    E99-B No:2
      Page(s):
    326-336

    3GPP Long Term Evolution (LTE) is one of the most advanced technologies in the wireless and mobility field because it provides high speed data and sophisticated applications. LTE was originally deployed by service providers on various platforms using separate dedicated hardware in Access radio layer and the Evolved Packet Core network layer (EPC), thereby limiting the system's flexibility and capacity provisioning. Thus, the concept of virtualization was introduced in the EPC hardware to solve the dedicated hardware platform limitations. It was also introduced in the IP Multimedia Subsystem (IMS) and Machine to Machine applications (M2M) for the same reason. This paper provides a simulation model of a virtualized EPC and virtualized M2M transport application server connected via an external IP network, which has significant importance in the future of mobile networks. This model studies the virtualized server connectivity problem, where two separate virtual machines communicate via the existing external legacy IP network. The simulation results show moderate performance, indicating that the selection of IP technology is much more critical than before. The paper also models MPLS technology as a replacement for the external IP routing mechanism to provide traffic engineering and achieve more efficient network performance. Furthermore, to provide a real network environment, Poisson Pareto Burst Process (PPBP) traffic source is carried over the UDP transport layer which matches the statistical properties of real-life M2M traffic. Furthermore, the paper proves End-to-End interoperability of LTE and MPLS running GTP and MPLS Label Forwarding information Base (LFIB) and MPLS traffic engineering respectively. Finally, it looks at the simulation of several scenarios using Network Simulator 3 (NS-3) to evaluate the performance improvement over the traditional LTE IP architecture under M2M traffic load.

  • A Design of GS1 EPCglobal Application Level Events Extension for IoT Applications

    Chao-Wen TSENG  Yu-Chang CHEN  Chua-Huang HUANG  

     
    PAPER

      Pubricized:
    2015/10/21
      Vol:
    E99-D No:1
      Page(s):
    30-39

    EPCglobal architecture framework is divided into identify, capture, and share layers and defines a collection of standards. It is not fully adequate to build IoT applications because the transducer capability is lacking. IEEE 1451 is a set of standards that defines data exchange format, communication protocols, and various connection interfaces between sensors/actuators and transducer interface modules. By appending IEEE 1451 transducer capability to EPCglobal architecture framework, a consistent EPC scheme expression for heterogeneous things can be achieved at identify layer. It is benefit to extend the upper layers of EPCglobal architecture framework seamlessly. In this paper, we put our emphasis on how to leverage the transducer capability at the capture layer. A device cycle, transducer cycle specification, and transducer cycle report are introduced to collect and process sensor/actuator data. The design and implementation of GS1 EPCglobal Application Level Events (ALE) modules extension are proposed for explaining the design philosophy and verifying the feasibility. It will interact with the capture and query services of EPC Information Services (EPCIS) for IoT applications at the share layer. By cooperating and interacting with these layers of EPCglobal architecture framework, the IoT architecture EPCglobal+ based on international standards is built.

  • An Ultra Low Power and Variation Tolerant GEN2 RFID Tag Front-End with Novel Clock-Free Decoder

    Sung-Jin KIM  Minchang CHO  SeongHwan CHO  

     
    PAPER

      Vol:
    E93-C No:6
      Page(s):
    785-795

    In this paper, an ultra low power analog front-end for EPCglobal Class 1 Generation 2 RFID tag is presented. The proposed RFID tag removes the need for high frequency clock and counters used in conventional tags, which are the most power hungry blocks. The proposed clock-free decoder employs an analog integrator with an adaptive current source that provides a uniform decoding margin regardless of the data rate and a link frequency extractor based on a relaxation oscillator that generates frequency used for backscattering. A dual supply voltage scheme is also employed to increase the power efficiency of the tag. In order to improve the tolerance of the proposed circuit to environmental variations, a self-calibration circuit is proposed. The proposed RFID analog front-end circuit is designed and simulated in 0.25 µm CMOS, which shows that the power consumption is reduced by an order magnitude compared to the conventional RFID tags, without losing immunity to environmental variations.

  • Lightweight Props on the Weak Security of EPC Class-1 Generation-2 Standard

    Pedro PERIS-LOPEZ  Tieyan LI  Julio C. HERNANDEZ-CASTRO  

     
    PAPER

      Vol:
    E93-D No:3
      Page(s):
    518-527

    In 2006 EPCglobal and the International Organization for Standards (ISO) ratified the EPC Class-1 Generation-2 (Gen-2) and the ISO 18000-6C standards , respectively. These efforts represented major advancements in the direction of universal standardization for low-cost RFID tags. However, a cause for concern is that security issues do not seem to be properly addressed. In this paper, we propose a new lightweight RFID tag-reader mutual authentication scheme for use under the EPCglobal framework. The scheme is based on previous work by Konidala and Kim . We attempt to mitigate the weaknesses observed in the original scheme and, at the same time, consider other possible adversarial threats as well as constraints on low-cost RFID tags requirements.

  • A RFID EPC C1 Gen2 System with Channel Coding Capability in AWGN Noise Environments

    Ki Yong JEON  Sung Ho CHO  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E92-B No:2
      Page(s):
    608-611

    In this letter, we propose a new scheme for the tag structure of the EPCglobal Class-1 Generation-2 (EPC C1 Gen2) standard equipped with a channel encoding block and the corresponding decoding block in the receiver of the reader system. The channel coded tag is designed to fully accommodate the EPC C1 Gen2 standard. The use of the proposed channel encoding block increases the number of logic gates in the tag by no more than 5%. The proposed reader system is designed to be used in the mixed tag modes as well, where the channel coded tags and existing tags co-exist in the same inventory round. The performances of the proposed tags and the corresponding reader systems are also presented by comparing the number of EPC error frames and the tag identification time with those of the conventional tags and reader systems.

  • Domain Name System--Past, Present and Future

    Shigeya SUZUKI  Motonori NAKAMURA  

     
    INVITED PAPER

      Vol:
    E88-B No:3
      Page(s):
    857-864

    Domain Name System--DNS is a key service of the Internet. Without DNS, we cannot use any useful Internet applications. At the beginning of the Internet, email or file transfer applications were provided. DNS provides key service to them--resource discovery. Nowadays, there are broad range of software making use of DNS as basis of their application. In this paper, we explain the evolution of DNS, how DNS works and recent activities including operational issues. Then, we describe EPC network which make use of RFID to bridge real world and the Internet, and how DNS helps to organize EPC network.