This letter deals with joint carrier frequency offset (CFO) and direction of arrival (DOA) estimation based on the minimum variance distortionless response (MVDR) criterion for interleaved orthogonal frequency division multiple access (OFDMA)/space division multiple access (SDMA) uplink systems. In order to reduce the computational load of two-dimensional searching based methods, the proposed method includes only once polynomial CFO rooting and does not require DOA paring, hence it raises the searching efficiency. Several simulation results are provided to illustrate the effectiveness of the proposed method.
This letter proposes a novel intelligent dynamic channel assignment (DCA) scheme with small-cells to improve the system performance for uplink machine-type communications (MTC) based on OFDMA-FDD. Outdoor MTC devices (OMDs) have serious interference from indoor MTC devices (IMDs) served by small-cell access points (SAPs) with frequency reuse. Thus, in the proposed DCA scheme, the macro base station (MBS) first measures the received signal strength from both OMDs and IMDs after setting the transmission power. Then, the MBS dynamically assigns subchannels to each SAP with consideration of strong interference from IMDs to the MBS. Through simulation results, it is shown that the proposed DCA scheme outperforms other schemes in terms of the capacity of OMDs and IMDs.
Ryoichi TAKAHASHI Yosuke TANIGAWA Hideki TODE
In recent years, wireless LANs (WLANs) are closely deployed which means they interfere with each other. Mobile stations (MSs) like smart phones that connect to such WLANs are also increasing. In such interfering environments, radio interference frequency depends on MS position. In addition, as MSs and their applications become diverse, frame generation rates from MSs are also becoming various. Thus, sufficient frame transmission opportunities should be assigned to MSs regardless of their radio interference frequencies and frame generation rates. One key technology to deal with this issue is uplink orthogonal frequency division multiple access (OFDMA) transmission introduced in IEEE 802.11ax. However, existing works do not consider the differences of the interference frequencies and frame generation rates among MSs in an integrated manner. This paper proposes an uplink frame transmission method for interfering WLAN environments that effectively uses the OFDMA transmission to assign enough transmission opportunities to MSs regardless of their own interference frequencies and frame generation rates, while efficiently using the channel resource. Considering the combined problem, this proposed method allocates resource units (RUs), created by dividing the channel, to MSs. In addition, based on a mathematical analysis of required frame transmission duration, the proposed method flexibly selects the OFDMA transmission or conventional frame transmission with CSMA/CA, which is also not considered in the existing works.
This letter proposes a novel fractional frequency reuse (FFR) scheme with hybrid-beam trisector cell (HBTC) architectures that combine narrow-beam trisector cell (NBTC) and wide-beam trisector cell (WBTC) architectures to increase the system performance of cellular mobile networks. In the proposed FFR scheme, the macro base station first divides its macro user equipments (MUEs) into two groups, i.e., inner group (IG) and outer group (OG), based on the signal to interference plus noise ratio (SINR) of MUEs and then assigns subchannels to the MUEs in the IG and OG using the NBTC and WBTC antennas, respectively. Through simulation results, it is shown that the proposed FFR scheme outperforms other FFR schemes in terms of the SINR and capacity of MUEs.
Tao WANG Mingfang WANG Yating WU Yanzan SUN
This paper proposes an energy efficiency (EE) maximized resource allocation (RA) algorithm in orthogonal frequency division multiple access (OFDMA) downlink networks with multiple relays, where a novel opportunistic subcarrier pair based decode-and-forward (DF) protocol with beamforming is used. Specifically, every data transmission is carried out in two consecutive time slots. During every transmission, multiple parallel paths, including relayed paths and direct paths, are established by the proposed RA algorithm. As for the protocol, each subcarrier in the 1st slot can be paired with any subcarrier in 2nd slot to best utilize subcarrier resources. Furthermore, for each relayed path, multiple (not just single or all) relays can be chosen to apply beamforming at the subcarrier in the 2nd slot. Each direct path is constructed by an unpaired subcarrier in either the 1st or 2nd slot. In order to guarantee an acceptable spectrum efficiency, we also introduce a minimum rate constraint. The EE-maximized problem is a highly nonlinear optimization problem, which contains both continuous, discrete variables and has a fractional structure. To solve the problem, the best relay set and resource allocation for a relayed path are derived first, then we design an iterative algorithm to find the optimal RA for the network. Finally, numerical experiments are taken to demonstrate the effectiveness of the proposed algorithm, and show the impact of minimum rate requirement, user number and circuit power on the network EE.
This paper proposes a novel dynamic channel assignment scheme named interference-aware dynamic channel assignment (IA-DCA) for the downlink of enterprise small-cell networks (ESNs) that employ orthogonal frequency division multiple access (OFDMA) and frequency division duplexing (FDD). In ESNs, a lot of small-cell access points (SAPs) are densely deployed in a building and thus small-cell user equipments (SUEs) have more serious co-tier interference from neighbor SAPs than the conventional small-cell network. Therefore, in the proposed IA-DCA scheme, a local gateway (LGW) dynamically assigns different numbers of subchannel groups to SUEs through their serving SAPs according to the given traffic load and interference information. Through simulation results, we show that the proposed IA-DCA scheme outperforms other dynamic channel assignment schemes based on graph coloring algorithm in terms of the mean SUE capacity, fairness, and mean SAP channel utilization.
Guowei LI Qinghai YANG Kyung Sup KWAK
The widespread application of mobile electronic devices has triggered a boom in energy consumption, especially in user equipment (UE). In this paper, we investigate the energy-efficiency (EE) of a UE experiencing the worst channel conditions, which is termed worst-EE. Due to the limited battery of the mobile equipment, worst-EE is a suitable metric for EE fairness optimization in the uplink transmissions of orthogonal frequency division multiple access (OFDMA) networks. More specifically, we determine the optimal power and sub-carrier allocation to maximize the worst-EE with respect to UEs' transmit power, sub-carriers and statistical quality-of-service (QoS). In order to maximize the worst-EE, we formulate a max-min power and sub-carrier allocation problem, which involves nonconvex fractional mixed integer nonlinear programming, i.e., NP-hard to solve. To solve the problem, we first relax the allocation of sub-carriers, formulate the upper bound problem on the original one and prove the quasi-concave property of objective function. With the aid of the Powell-Hestenes-Rockfellar (PHR) approach, we propose a fairness EE sub-carrier and power allocation algorithm. Finally, simulation results demonstrate the advantages of the proposed algorithm.
The IEEE 802.11 wireless local area network (WLAN) is the most widely deployed communication standard in the world. Currently, the IEEE 802.11ax draft standard is one of the most advanced and promising among future wireless network standards. However, the suggested uplink-OFDMA (UL-OFDMA) random access method, based on trigger frame-random access (TF-R) from task group ax (TGax), does not yet show satisfying system performance. To enhance the UL-OFDMA capability of the IEEE 802.11ax draft standard, we propose a centralized contention-based MAC (CC-MAC) and describe its detailed operation. In this paper, we analyze the performance of CC-MAC by solving the Markov chain model and evaluating BSS throughput compared to other methods, such as DCF and TF-R, by computer simulation. Our results show that CC-MAC is a scalable and efficient scheme for improving the system performance in a UL-OFDMA random access situation in IEEE 802.11ax.
Ann-Chen CHANG Chih-Chang SHEN
In this letter, standard particle swarm optimization (PSO) with the center-symmetric trimmed correlation matrix and the orthogonal projection technique is firstly presented for blind carrier frequency offset estimation under interleaved orthogonal frequency division multiple access (OFDMA) uplink systems. It doesn't require eigenvalue decomposition and only needs a single OFDMA data block. Second, this letter also presents adaptive multiple inertia weights with Newton method to speed up the convergence of standard PSO iteration process. Meanwhile, the advantage of inherent interleaved OFDMA signal structure also is exploited to conquer the problems of local optimization and the effect of ambiguous peaks for the proposed approaches. Finally, several simulation results are provided for illustration and comparison.
Lianjun DENG Teruo KAWAMURA Hidekazu TAOKA Mamoru SAWAHASHI
Open-loop (OL) transmit diversity is more subject to the influence of channel estimation error than closed-loop (CL) transmit diversity, although it has the merit of providing better performance in fast Doppler frequency environments because it doesn't require a feedback signal. This paper proposes an OL transmit diversity scheme combined with intra-subframe frequency hopping (FH) and iterative decision-feedback channel estimation (DFCE) in a shared channel for discrete Fourier transform (DFT)-precoded orthogonal frequency division multiple access (OFDMA). We apply intra-subframe FH to OL transmit diversity to mitigate the reduction in the diversity gain under high fading correlation conditions among antennas and iterative DFCE to improve the channel estimation accuracy. Computer simulation results show that the required average received signal-to-noise power ratio at the average block error rate (BLER) of 10-2 of the space-time block code (STBC) with intra-subframe FH is reduced to within approximately 0.8dB compared to codebook-based CL transmit diversity when using iterative DFCE at the maximum Doppler frequency of fD =5.55Hz. Moreover, it is shown that STBC with intra-subframe FH and iterative DFCE achieves much better BLER performance compared to CL transmit diversity when fD is higher than approximately 30Hz since the tracking ability of the latter degrades due to the fast fading variation in its feedback loop.
Lianjun DENG Teruo KAWAMURA Hidekazu TAOKA Mamoru SAWAHASHI
This paper presents comprehensive comparisons on the block error rate (BLER) performance of rate-one open-loop (OL) transmit diversity schemes with four antennas for discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). One candidate scheme employs a quasi-orthogonal (QO) - space-time block code (STBC) in which four-branch minimum mean-square error (MMSE) combining is achieved at the cost of residual inter-code interference (ICI). Another candidate employs a combination of the STBC and selection transmit diversity called time switched transmit diversity (TSTD) (or frequency switched transmit diversity (FSTD)). We apply a turbo frequency domain equalizer (FDE) associated with iterative decision-feedback channel estimation (DFCE) using soft-symbol estimation to reduce channel estimation (CE) error. The turbo FDE includes an ICI canceller to reduce the influence of the residual ICI for the QO-STBC. Based on link-level simulation results, we show that a combination of the STBC and TSTD (or FSTD) is suitable as a four-antenna OL transmit diversity scheme for DFT-precoded OFDMA using the turbo FDE and iterative DFCE.
Junwoo JUNG Jaesung LIM Haengik KANG Hyungwon PARK
Signals transmitted by multiple stations through different multiple subchannels may arrive at a particular station, such as an access point (AP), with different time delays. If the difference in arrival time delays exceeds the cyclic prefix duration, the orthogonality among the subchannels can be broken, which leads to multiple access interference (MAI) among the stations. In this paper, we propose a multichannel slotted Aloha scheme based on an MAI-free group for a simple orthogonal frequency division multiple access (OFDMA) wireless network. Each MAI-free group consists of stations whose signals arrive at the AP within the cyclic prefix duration. The proposed scheme outperforms a conventional scheme using a fast retrial algorithm in terms of throughput due to smaller cyclic prefix duration, lower collision probability, and lower block probability. While the proposed scheme has higher delay overhead in a low arrival rate region, its delay approaches that of the conventional scheme as the arrival rate increases.
Ann-Chen CHANG Chih-Chang SHEN
This letter deals with the carrier frequency offsets (CFO) estimation problem for orthogonal frequency division multiple access (OFDMA) uplink systems. Combined with centro-symmetric (CS) trimmed autocorrelation matrix and weighting subspace projection, the proposed estimator has better estimate performance than MVDR, MUSIC, CS-MUSIC, and ESPRIT estimators, especially in relatively less of OFDMA blocks and low SNR situations. Simulation results are presented to verify the efficiency of the proposed estimator.
Ann-Chen CHANG Chih-Chang SHEN
In this letter, an iterative carrier frequency offset (CFO) estimation approach is presented which finds a new CFO vector based on first order Taylor series expansion of the one initially given for interleaved orthogonal frequency division multiple access uplink systems. The problem of finding the new CFO vector is formulated as the closed form of a generalized eigenvalue problem, which allows one to readily solve it. The proposed estimator combined center-symmetric trimmed correlation matrix and orthogonal projection technique, which doesn't require eigenvalue decomposition and it only needs single data block.
Yuta IDA Chang-Jun AHN Takahiro MATSUMOTO Shinya MATSUFUJI
To achieve more high speed and high quality systems of wireless communications, orthogonal frequency division multiple access (OFDMA) has been proposed. Moreover, OFDMA considering the multiuser diversity (MUDiv) has been also proposed to achieve more high system performance. On the other hand, the conventional MUDiv/OFDMA requires large complexity to select the subcarrier of each user. To solve this problem, we have proposed a MUDiv/OFDMA based on the low granularity block (LGB). However, it degrades the system performance in the environment which contains many deep faded subcarrier channels. Therefore, in this paper, we propose a cooperative LGB-MUDiv/OFDMA to mitigate the influence due to the deep faded subcarrier channel.
Junpyo JEON Hyoung-Muk LIM Hyuncheol PARK Hyoung-Kyu SONG
Cooperative communication has been proposed to improve the disadvantages of the multiple-input multiple-output (MIMO) technique without using extra multiple antennas. In an orthogonal frequency division multiple access (OFDMA) system, a cooperative communication that each user shares their allocated sub-channels instead of the MIMO system has been proposed to improve the throughput. But the cooperative communication has a problem as the decreased throughput because it is necessary that users send and receive the information to each other to improve reliability. In this letter, the modified cooperative transmission scheme is proposed to improve reliability in the fading channel, and it can solve the problem for BER performance that is dependent on the errors in the first phase that exchanges the information between both users during the first time.
A coherent combining-based initial ranging scheme is proposed for multiple-input multiple-output and orthogonal frequency division multiple access systems. The proposed algorithm utilizes the correlation properties of the ranging codes to resolve the multipath components, coherently combines the initial ranging signal of resolved path on each receiving antenna to maximize the output signal-to-interference-and-noise ratio, and then collects the power of the multipath signals to detect the states of the ranging codes. Simulation results show that the proposed scheme has much better performance than the available noncoherent combining method, and can accommodate more active ranging users simultaneously in each cell.
Se-Jin KIM IlKwon CHO Yi-Kang KIM Choong-Ho CHO
In dense femtocell networks (DFNs), one of the main issues is interference management since interference between femtocell access points (FAPs) reduces the system performance significantly. Further, FAPs serve different numbers of femtocell user equipments (FUEs), i.e., some FAPs have more than one FUE while others have one or no FUEs. Therefore, for DFNs, an intelligent channel assignment scheme is necessary considering both the number of FUEs connected to the same FAPs and interference mitigation to improve system performance. This paper proposes a two-stage dynamic channel assignment (TS-DCA) scheme for downlink DFNs based on orthogonal frequency division multiple access/frequency division duplex (OFDMA/FDD). In stage 1, using graph coloring algorithm, a femtocell gateway (FGW) first groups FUEs based on an interference graph that considers different numbers of FUEs per FAP. Then, in stage 2, the FGW dynamically assigns subchannels to FUE clusters according to the order of maximum capacity of FAP clusters. In addition, FAPs adaptively assign remaining subchannels in FUE clusters to their FUEs in other FUE clusters. Through simulations, we first find optimum parameters of the FUE clustering to maximize the system capacity and then evaluate system performance in terms of the mean FUE capacity, unsatisfied FUE probability, and mean FAP transmission energy consumption according to the different numbers of FUEs and FAPs with a given FUE traffic load.
Shinichi MIYAMOTO Naoya IKESHITA Seiichi SAMPEI Wenjie JIANG
To enhance the throughput of wireless local area networks (WLANs) by efficiently utilizing the radio resource, a distributed coordination function-based (DCF-based) orthogonal frequency division multiple access (OFDMA) WLAN system has been proposed. In the system, since each OFDMA sub-channel is assigned to the associated station with the highest channel gain, the transmission rate of DATA frames can be enhanced thanks to multi-user diversity. However, the optimum allocation of OFDMA sub-channels requires the estimation of channel state information (CSI) of all associated stations, and this incurs excessive signaling overhead. As the number of associated stations increases, the signaling overhead severely degrades the throughput of DCF-based OFDMA WLAN. To reduce the signaling overhead while obtaining a sufficient diversity gain, this paper proposes a channel access scheme that performs multiple DCF-based channel access. The key idea of the proposed scheme is to introduce additional DCF-based prioritized access along with the traditional DCF-based random access. In the additional DCF-based prioritized access, by dynamically adjusting contention window size according to the CSI of each station, only the stations with better channel state inform their CSI to the access point (AP), and the signaling overhead can be reduced while maintaining high multi-user diversity gain. Numerical results confirm that the proposed channel access scheme enhances the throughput of OFDMA WLAN.
Takayoshi IWATA Hiroyuki MIYAZAKI Fumiyuki ADACHI
Scheduling imposes a trade-off between sum capacity and fairness among users. In some situations, fairness needs to be given the first priority. Therefore, a scheduling algorithm which can flexibly control sum capacity and fairness is desirable. In this paper, assuming the single-carrier frequency division multiple access (SC-FDMA), we propose three scheduling algorithms: modified max-map, proportional fairness (PF)-map, and max-min. The available subcarriers are grouped into a number of subcarrier-blocks each having the same number of subcarriers. The scheduling is done on a subcarrier-block by subcarrier-block basis to take advantage of the channel frequency-selectivity. The same number of non-contiguous subcarrier-blocks is assigned to selected users. The trade-off between sum capacity and fairness is controlled by changing the number of simultaneously scheduling users per time-slot. Capacity, fairness, and peak-to-average power ratio (PAPR) when using the proposed scheduling algorithms are examined by computer simulation.