The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] FPGA-IP(2hit)

1-2hit
  • An eFPGA Generation Suite with Customizable Architecture and IDE

    Morihiro KUGA  Qian ZHAO  Yuya NAKAZATO  Motoki AMAGASAKI  Masahiro IIDA  

     
    PAPER

      Pubricized:
    2022/10/07
      Vol:
    E106-A No:3
      Page(s):
    560-574

    From edge devices to cloud servers, providing optimized hardware acceleration for specific applications has become a key approach to improve the efficiency of computer systems. Traditionally, many systems employ commercial field-programmable gate arrays (FPGAs) to implement dedicated hardware accelerator as the CPU's co-processor. However, commercial FPGAs are designed in generic architectures and are provided in the form of discrete chips, which makes it difficult to meet increasingly diversified market needs, such as balancing reconfigurable hardware resources for a specific application, or to be integrated into a customer's system-on-a-chip (SoC) in the form of embedded FPGA (eFPGA). In this paper, we propose an eFPGA generation suite with customizable architecture and integrated development environment (IDE), which covers the entire eFPGA design generation, testing, and utilization stages. For the eFPGA design generation, our intellectual property (IP) generation flow can explore the optimal logic cell, routing, and array structures for given target applications. For the testability, we employ a previously proposed shipping test method that is 100% accurate at detecting all stuck-at faults in the entire FPGA-IP. In addition, we propose a user-friendly and customizable Web-based IDE framework for the generated eFPGA based on the NODE-RED development framework. In the case study, we show an eFPGA architecture exploration example for a differential privacy encryption application using the proposed suite. Then we show the implementation and evaluation of the eFPGA prototype with a 55nm test element group chip design.

  • Physical Fault Detection and Recovery Methods for System-LSI Loaded FPGA-IP Core Open Access

    Motoki AMAGASAKI  Yuki NISHITANI  Kazuki INOUE  Masahiro IIDA  Morihiro KUGA  Toshinori SUEYOSHI  

     
    INVITED PAPER

      Pubricized:
    2017/01/13
      Vol:
    E100-D No:4
      Page(s):
    633-644

    Fault tolerance is an important feature for the system LSIs used in reliability-critical systems. Although redundancy techniques are generally used to provide fault tolerance, these techniques have significantly hardware costs. However, FPGAs can easily provide high reliability due to their reconfiguration ability. Even if faults occur, the implemented circuit can perform correctly by reconfiguring to a fault-free region of the FPGA. In this paper, we examine an FPGA-IP core loaded in SoC and introduce a fault-tolerant technology based on fault detection and recovery as a CAD-level approach. To detect fault position, we add a route to the manufacturing test method proposed in earlier research and identify fault areas. Furthermore, we perform fault recovery at the logic tile and multiplexer levels using reconfiguration. The evaluation results for the FPGA-IP core loaded in the system LSI demonstrate that it was able to completely identify and avoid fault areas relative to the faults in the routing area.