The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Gibbs(13hit)

1-13hit
  • Adaptive Mixing Probability Scheme in Mixed Gibbs Sampling MIMO Signal Detection

    Kenshiro CHUMAN  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/19
      Vol:
    E106-B No:12
      Page(s):
    1463-1469

    This paper proposes an adaptive mixing probability scheme for mixed Gibbs sampling (MGS) or MGS with maximum ratio combining (MRC) in multiple-input multiple-output (MIMO) demodulation. In the conventional MGS algorithm, the mixing probability is fixed. Thus, if a search point is captured by a local minimum, it takes a larger number of samples to escape. In the proposed scheme, the mixing probability is increased when a candidate transmit symbol vector is captured by a local minimum. Using the adaptive mixing probability, the numbers of candidate transmit symbol vectors searched by demodulation algorithms increase. The proposed scheme in MGS as well as MGS with MRC reduces an error floor level as compared with the conventional scheme. Numerical results obtained through computer simulation show that the bit error rates of the MGS as well as the MGS with MRC reduces by about 1/100 when the number of iterations is 100 in a 64×64 MIMO system.

  • Gain and Output Optimization Scheme for Block Low-Resolution DACs in Massive MIMO Downlink

    Taichi YAMAKADO  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/07/24
      Vol:
    E106-B No:11
      Page(s):
    1200-1209

    In this paper, a nonlinear quantized precoding scheme for low-resolution digital-analog converters (DACs) in a massive multiple-input multiple-output (MIMO) system is proposed. The nonlinear quantized precoding determines transmit antenna outputs with a transmit symbol and channel state information. In a full-digital massive MIMO system, low-resolution DACs are used to suppress power consumption. Conventional precoding algorithms for low-resolution DACs do not optimize transmit antenna gains individually. Thus, in this paper, a precoding scheme that optimizes individual transmit antenna gains as well as the DAC outputs is proposed. In the proposed scheme, the subarray of massive MIMO antennas is treated virtually as a single antenna element. Numerical results obtained through computer simulation show that the proposed precoding scheme achieves bit error rate performance close to that of the conventional precoding scheme with much smaller antenna gains on a CDL-A channel.

  • Reduction of Out-of-Band Radiation with Quantized Precoding Using Gibbs Sampling in Massive MU-MIMO-OFDM

    Taichi YAMAKADO  Riki OKAWA  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2022/04/06
      Vol:
    E105-B No:10
      Page(s):
    1240-1248

    In this paper, a non-linear precoding algorithm with low out-of-band (OOB) radiation is proposed for massive multiple-input multiple-output (MIMO) systems. Massive MIMO sets more than one hundred antennas at each base station to achieve higher spectral efficiency and throughput. Full digital massive MIMO may constrain the resolution of digital-to-analog converters (DACs) since each DAC consumes a large amount of power. In massive MIMO systems with low resolution DACs, designing methods of DAC output signals by nonlinear processing are being investigated. The conventional scheme focuses only on a sum rate or errors in the received signals and so triggers large OOB radiation. This paper proposes an optimization criterion that takes OOB radiation power into account. Gibbs sampling is used as an algorithm to find sub-optimal solutions given this criterion. Numerical results obtained through computer simulation show that the proposed criterion reduces mean OOB radiation power by a factor of 10 as compared with the conventional criterion. The proposed criterion also reduces OOB radiation while increasing the average sum rate by optimizing the weight factor for the OOB radiation. As a result, the proposed criterion achieves approximately 1.3 times higher average sum rates than an error-based criterion. On the other hand, as compared with a sum rate based criterion, the throughput on each subcarrier shows less variation which reduces the number of link adaptation options needed although the average sum rate of the proposed criterion is smaller.

  • Power-Based Criteria for Signal Reconstruction Using 1-bit Resolution DACs in Massive MU-MIMO OFDM Downlink

    Riki OKAWA  Yukitoshi SANADA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/04/02
      Vol:
    E104-B No:10
      Page(s):
    1299-1306

    The sum rate performance of nonlinier quantized precoding using Gibbs sampling are evaluated in a massive multiuser multiple-input multiple-output (MU-MIMO) system in this paper. Massive MU-MIMO is a key technology to handle the growth of data traffic. In a full digital massive MU-MIMO system, however, the resolution of digital-to-analogue converters (DACs) in transmit antenna branches have to be low to yield acceptable power consumption. Thus, a combinational optimization problem is solved for the nonlinier quantized precoding to determine transmit signals from finite alphabets output from low resolution DACs. A conventional optimization criterion minimizes errors between desired signals and received signals at user equipments (UEs). However, the system sum rate may decrease as it increases the transmit power. This paper proposes two optimization criteria that take the transmit power into account in order to maximize the sum rate. Mixed Gibbs sampling is applied to obtain the suboptimal solution of the nonlinear optimization problem. Numerical results obtained through computer simulations show that the two proposed criteria achieve higher sum rates than the conventional criterion. On the other hand, the sum rate criterion achieves the largest sum rate while it leads to less throughputs than the MMSE criterion on approximately 60% of subcarriers.

  • Likelihood-Based Metric for Gibbs Sampling Turbo MIMO Detection Open Access

    Yutaro KOBAYASHI  Yukitoshi SANADA  

     
    PAPER

      Pubricized:
    2021/03/23
      Vol:
    E104-B No:9
      Page(s):
    1046-1053

    In a multiple-input multiple-output (MIMO) system, maximum likelihood detection (MLD) is the best demodulation scheme if no a priori information is available. However, the complexity of MLD increases exponentially with the number of signal streams. Therefore, various demodulation schemes with less complexity have been proposed and some of those schemes show performance close to that of MLD. One kind of those schemes uses a Gibbs sampling (GS) algorithm. GS MIMO detection that combines feedback from turbo decoding has been proposed. In this scheme, the accuracy of GS MIMO detection is improved by feeding back loglikelihood ratios (LLRs) from a turbo decoder. In this paper, GS MIMO detection using only feedback LLRs from a turbo decoder is proposed. Through extrinsic information transfer (EXIT) chart analysis, it is shown that the EXIT curves with and without metrics calculated from received signals overlap as the feedback LLR values increase. Therefore, the proposed scheme calculates the metrics from received signals only for the first GS MIMO detection and the selection probabilities of GS MIMO detection in the following iterations are calculated based only on the LLRs from turbo decoders. Numerical results obtained through computer simulation show that the performance of proposed GS turbo MIMO detection is worse than that of conventional GS turbo MIMO detection when the number of GS iterations is small. However the performance improves as the number of GS iterations increases. When the number of GS iterations is 30 or more, the bit error rate (BER) performance of the proposed scheme is equivalent to that of the conventional scheme. Therefore, the proposed scheme can reduce the computational complexity of selection probability calculation in GS turbo MIMO detection.

  • Forcible Search Scheme for Mixed Gibbs Sampling Massive MIMO Detection

    Kenji YAMAZAKI  Yukitoshi SANADA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/10/06
      Vol:
    E104-B No:4
      Page(s):
    419-427

    In this paper, mixed Gibbs sampling multiple-input multiple-output (MIMO) detection with forcible search is proposed. In conventional Gibbs sampling MIMO detection, the problem of stalling occurs under high signal-to-noise ratios (SNRs) which degrades the detection performance. Mixed Gibbs sampling (MGS) is one solution to this problem. In MGS, random sampling is carried out with a constant probability regardless of whether a current search falls into a local minimum. In the proposed scheme, combined with MGS, multiple candidate symbols are forcibly changed when the search is captured by a local minimum. The search restarts away from the local minimum which effectively enlarges the search area in the solution space. Numerical results obtained through computer simulation show that the proposed scheme achieves better performance in a large scale MIMO system with QPSK signals.

  • Resolution of the Gibbs Phenomenon for Fractional Fourier Series

    Hongqing ZHU  Meiyu DING  Daqi GAO  

     
    PAPER-Digital Signal Processing

      Vol:
    E97-A No:2
      Page(s):
    572-586

    The nth partial sums of a classical Fourier series have large oscillations near the jump discontinuities. This behaviour is the well-known Gibbs phenomenon. Recently, the inverse polynomial reconstruction method (IPRM) has been successfully implemented to reconstruct piecewise smooth functions by reducing the effects of the Gibbs phenomenon for Fourier series. This paper addresses the 2-D fractional Fourier series (FrFS) using the same approach used with the 1-D fractional Fourier series and finds that the Gibbs phenomenon will be observed in 1-D and 2-D fractional Fourier series expansions for functions at a jump discontinuity. The existing IPRM for resolution of the Gibbs phenomenon for 1-D and 2-D FrFS appears to be the same as that used for Fourier series. The proof of convergence provides theoretical basis for both 1-D and 2-D IPRM to remove Gibbs phenomenon. Several numerical examples are investigated. The results indicate that the IPRM method completely eliminates the Gibbs phenomenon and gives exact reconstruction results.

  • MPI/OpenMP Hybrid Parallel Inference Methods for Latent Dirichlet Allocation – Approximation and Evaluation

    Shotaro TORA  Koji EGUCHI  

     
    PAPER-Advanced Search

      Vol:
    E96-D No:5
      Page(s):
    1006-1015

    Recently, probabilistic topic models have been applied to various types of data, including text, and their effectiveness has been demonstrated. Latent Dirichlet allocation (LDA) is a well known topic model. Variational Bayesian inference or collapsed Gibbs sampling is often used to estimate parameters in LDA; however, these inference methods incur high computational cost for large-scale data. Therefore, highly efficient technology is needed for this purpose. We use parallel computation technology for efficient collapsed Gibbs sampling inference for LDA. We assume a symmetric multiprocessing (SMP) cluster, which has been widely used in recent years. In prior work on parallel inference for LDA, either MPI or OpenMP has often been used alone. For an SMP cluster, however, it is more suitable to adopt hybrid parallelization that uses message passing for communication between SMP nodes and loop directives for parallelization within each SMP node. We developed an MPI/OpenMP hybrid parallel inference method for LDA, and evaluated the performance of the inference under various settings of an SMP cluster. We further investigated the approximation that controls the inter-node communications, and found out that it achieved noticeable increase in inference speed while maintaining inference accuracy.

  • Enhancing Digital Book Clustering by LDAC Model

    Lidong WANG  Yuan JIE  

     
    PAPER

      Vol:
    E95-D No:4
      Page(s):
    982-988

    In Digital Library (DL) applications, digital book clustering is an important and urgent research task. However, it is difficult to conduct effectively because of the great length of digital books. To do the correct clustering for digital books, a novel method based on probabilistic topic model is proposed. Firstly, we build a topic model named LDAC. The main goal of LDAC topic modeling is to effectively extract topics from digital books. Subsequently, Gibbs sampling is applied for parameter inference. Once the model parameters are learned, each book is assigned to the cluster which maximizes the posterior probability. Experimental results demonstrate that our approach based on LDAC is able to achieve significant improvement as compared to the related methods.

  • Doubly-Selective Channel Estimation for MIMO-OFDM Systems with Experimental Verification

    Xiaolin HOU  Jianping CHEN  En ZHOU  Zhan ZHANG  Hidetoshi KAYAMA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E92-B No:1
      Page(s):
    254-267

    Multiple-input multiple- output (MIMO) and orthogonal frequency division multiplexing (OFDM) are two key techniques for broadband wireless mobile communications and channel state information (CSI) is critical for the realization and performance of MIMO-OFDM systems in doubly-selective fading channels. Channel estimation based on two-dimensional discrete-time Fourier transform interpolation (2D-DFTI) is a promising solution to obtain accurate CSI for MIMO-OFDM systems in theory because of both its robustness and high computational efficiency, however, its performance will degrade significantly in practical MIMO-OFDM systems due to the two-dimensional Gibbs phenomenon caused by virtual subcarriers and burst transmission. In this paper, we propose a novel channel estimation method based on the two-dimensional enhanced DFT interpolation (2D-EDFTI), i.e., the frequency-domain EDFTI (FD-EDFTI) concatenated with the time-domain EDFTI (TD-EDFTI), for practical burst-mode MIMO-OFDM systems with virtual subcarriers, which can increase the channel estimation accuracy effectively by mitigating the Gibbs phenomenon in frequency-domain and time-domain, respectively, while keeping good robustness and high computational efficiency. In addition to computer simulations, we further implement the 2D-EDFTI channel estimator into our real-time FPGA testbed of 44 MIMO-OFDM transmission via spatial multiplexing, together with different MIMO detectors. Both computer simulations and RF experiments demonstrate the superior performance of 2D-EDFTI channel estimation in doubly-selective fading channels, therefore, high-throughput MIMO-OFDM transmission based on different MIMO detection algorithms can always be well supported. Also, it can be applied to other MIMO-OFDM transmission schemes straightforwardly.

  • SNR Estimation Using Gibbs Sampler

    Zhigang CAO  Yafeng ZHAN  Zhengxin MA  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E87-B No:10
      Page(s):
    2972-2979

    This paper proposes a SNR estimation scheme based on Gibbs sampler. This scheme can estimate SNR using a very short received sequence, and does not require any prior information of the transmitted symbol. Compared with the existing estimators, the performance of this method is better when real SNR is larger than 5 dB in both single path channel and multi-path channel.

  • Reduction of Gibbs Overshoot in Continuous Wavelet Transform

    Handa CHEN  Yasuhiro KAWAI  Hajime MAEDA  

     
    PAPER

      Vol:
    E80-A No:8
      Page(s):
    1352-1361

    In this paper we propose two methods, named the time smoothing and the scale smoothing respectively, to reduce the Gibbs overshoot in continuous wavelet transform. In is shown that for a large kind of wavelets the scale smoothing cannot remove the Gibbs overshoot completely as in the case of Fourier analysis, but it is possible to reduce the overshoot for any wavelets by choosing the smoothing window functions properly. The frequency behavior of scale smoothing is similar to that of the time smoothing. According to its frequency behavior we give the empirical conditions for selecting the smoothing window functions. Numerical examples are given for illustrations.

  • Stochastic Model-Based Image Segmentation Using Functional Approximation

    Andr KAUP  Til AACH  

     
    PAPER-Image Processing

      Vol:
    E77-A No:9
      Page(s):
    1451-1456

    An unsupervised segmentation technique is presented that is based on a layered statistical model for both region shapes and the region internal texture signals. While the image partition is modelled as a sample of a Gibbs/Markov random field, the texture inside each image segment is described using functional approximation. The segmentation and the unknown parameters are estimated through iterative optimization of an MAP objective function. The obtained tesults are subjectively agreeable and well suited for the requirements of region-oriented transform image coding.