The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] Gunn oscillator(2hit)

1-2hit
  • A Beam-Switchable Self-Oscillating Active Integrated Array Antenna Using Gunn Oscillator and Magic-T

    Maodudul HASAN  Eisuke NISHIYAMA  Ichihiko TOYODA  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2021/05/14
      Vol:
    E104-B No:11
      Page(s):
    1419-1428

    Herein, a novel self-oscillating active integrated array antenna (AIAA) is proposed for beam switching X-band applications. The proposed AIAA comprises four linearly polarized microstrip antenna elements, a Gunn oscillator, two planar magic-Ts, and two single-pole single-throw (SPST) switches. The in/anti-phase signal combination approach employing planar magic-Ts is adopted to attain bidirectional radiation patterns in the φ =90° plane with a simple structure. The proposed antenna can switch its beam using the SPST switches. The antenna is analyzed through simulations, and a prototype of the antenna is fabricated and tested to validate the concept. The proposed concept is found to be feasible; the prototype has an effective isotropic radiated power of +15.98dBm, radiated power level of +4.28dBm, and cross-polarization suppression of better than 15dB. The measured radiation patterns are in good agreement with the simulation results.

  • Low Noise Second Harmonic Oscillator Using Mutually Synchronized Gunn Diodes

    Kengo KAWASAKI  Takayuki TANAKA  Masayoshi AIKAWA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E93-C No:9
      Page(s):
    1460-1466

    This paper represents a low noise second harmonic oscillator using mutually synchronized Gunn diodes. A multi-layer MIC technology is adopted to reduce the circuit size of the oscillator. The oscillator consists of Gunn diodes, slot line resonators and strip lines. By embedding Gunn diodes in the slot line resonators, a harmonic RF signal can be generated very easily. The strip lines are used for the power combining output circuit. The shape of slot line resonator is square in order to achieve the low phase noise and the suppression of undesired harmonics. The second harmonic oscillator is designed and fabricated in K band. The output power is +8.89 dBm at the design frequency of 18.75 GHz (2f0) with the phase noise of -116.2 dBc/Hz at the offset frequency of 1 MHz. Excellent suppression of the undesired fundamental frequency signal (f0) of -33 dBc is achieved. Also, the circuit size is reduced by three-tenths relative to that of the previously proposed circuit.