The search functionality is under construction.

Keyword Search Result

[Keyword] MOS current-mode logic(2hit)

1-2hit
  • A Bit-Serial Reconfigurable VLSI Based on a Multiple-Valued X-Net Data Transfer Scheme

    Xu BAI  Michitaka KAMEYAMA  

     
    PAPER-Computer System

      Vol:
    E96-D No:7
      Page(s):
    1449-1456

    A multiple-valued data transfer scheme using X-net is proposed to realize a compact bit-serial reconfigurable VLSI (BS-RVLSI). In the multiple-valued data transfer scheme using X-net, two binary data can be transferred from two adjacent cells to one common adjacent cell simultaneously at each “X” intersection. One cell composed of a logic block and a switch block is connected to four adjacent cross points by four one-bit switches so that the complexity of the switch block is reduced to 50% in comparison with the cell of a BS-RVLSI using an eight nearest-neighbor mesh network (8-NNM). In the logic block, threshold logic circuits are used to perform threshold operations, and then their binary dual-rail voltage outputs enter a binary logic module which can be programmed to realize an arbitrary two-variable binary function or a bit-serial adder. As a result, the configuration memory count and transistor count of the proposed multiple-valued cell are reduced to 34% and 58%, respectively, in comparison with those of an equivalent CMOS cell. Moreover, its power consumption for an arbitrary 2-variable binary function becomes 67% at 800 MHz under the condition of the same delay time.

  • A Methodology for the Design of MOS Current-Mode Logic Circuits

    Giuseppe CARUSO  Alessio MACCHIARELLA  

     
    PAPER-Electronic Circuits

      Vol:
    E93-C No:2
      Page(s):
    172-181

    In this paper, a design methodology for the minimization of various performance metrics of MOS Current-Mode Logic (MCML) circuits is described. In particular, it allows to minimize the delay under a given power consumption, the power consumption under a given delay and the power-delay product. Design solutions can be evaluated graphically or by simple and effective automatic procedures implemented within the MATLAB environment. The methodology exploits the novel concepts of crossing-point current and crossing-point capacitance. A useful feature of it is that it provides the designer with useful insights into the dependence of the performance metrics on design variables and fan-out capacitance. The methodology was validated by designing several MCML circuits in an IBM 130 nm CMOS process.