The search functionality is under construction.

Keyword Search Result

[Keyword] Pulse Doppler radar(4hit)

1-4hit
  • Accurate Doppler Velocity Estimation by Iterative WKD Algorithm for Pulse-Doppler Radar

    Takumi HAYASHI  Takeru ANDO  Shouhei KIDERA  

     
    PAPER-Sensing

      Pubricized:
    2022/06/29
      Vol:
    E105-B No:12
      Page(s):
    1600-1613

    In this study, we propose an accurate range-Doppler analysis algorithm for moving multiple objects in a short range using microwave (including millimeter wave) radars. As a promising Doppler analysis for the above model, we previously proposed a weighted kernel density (WKD) estimator algorithm, which overcomes several disadvantages in coherent integration based methods, such as a trade-off between temporal and frequency resolutions. However, in handling multiple objects like human body, it is difficult to maintain the accuracy of the Doppler velocity estimation, because there are multiple responses from multiple parts of object, like human body, incurring inaccuracies in range or Doppler velocity estimation. To address this issue, we propose an iterative algorithm by exploiting an output of the WKD algorithm. Three-dimensional numerical analysis, assuming a human body model in motion, and experimental tests demonstrate that the proposed algorithm provides more accurate, high-resolution range-Doppler velocity profiles than the original WKD algorithm, without increasing computational complexity. Particularly, the simulation results show that the cumulative probabilities of range errors within 10mm, and Doppler velocity error within 0.1m/s are enhanced from 34% (by the former method) to 63% (by the proposed method).

  • A New Fine Doppler Frequency Estimator Based on Two-Sample FFT for Pulse Doppler Radar

    Sang-Dong KIM  Jong-Hun LEE  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E96-B No:6
      Page(s):
    1643-1646

    We propose a new fine Doppler frequency estimator using two fast Fourier transform (FFT) samples for pulse Doppler radar that offers highly sensitive detection and a high resolution of velocity. The procedure of fine Doppler frequency estimation is completed through coarse frequency estimation (CFE) and fine frequency estimation (FFE) steps. During the CFE step, the integer part of the Doppler frequency is obtained by processing the FFT, after which, during the FFE step, the fractional part is estimated using the relationship between the FFT peak and its nearest resultant value. Our simulation results show that the proposed estimator has better accuracy than Candan's estimator in terms of bias. The root mean square error (RMSE) of the proposed estimator has more than 1.4 time better accuracy than Candan's estimator under a 1,024-point FFT and a signal-to-noise ratio (SNR) of 10 dB. In addition, when the FFT size is increased from 512 to 2,048, the RMSE characteristics of the proposed estimator improve by more than two-fold.

  • PCA-Based Detection Algorithm of Moving Target Buried in Clutter in Doppler Frequency Domain

    Muhammad WAQAS  Shouhei KIDERA  Tetsuo KIRIMOTO  

     
    LETTER-Sensing

      Vol:
    E94-B No:11
      Page(s):
    3190-3194

    This letter proposes a novel technique for detecting a target signal buried in clutter using principal component analysis (PCA) for pulse-Doppler radar systems. The conventional detection algorithm is based on the fast Fourier transform-constant false alarm rate (FFT-CFAR) approaches. However, the detection task becomes extremely difficult when the Doppler spectrum of the target is completely buried in the spectrum of clutter. To enhance the detection probability in the above situations, the proposed method employs the PCA algorithm, which decomposes the target and clutter signals into uncorrelated components. The performances of the proposed method and the conventional FFT-CFAR based detection method are evaluated in terms of the receiver operating characteristics (ROC) for various signal-to-clutter ratio (SCR) cases. The results of numerical simulations show that the proposed method significantly enhances the detection probability compared with that obtained using the conventional FFT-CFAR method, especially for lower SCR situations.

  • A Memory-Efficient Hardware Architecture for a Pulse Doppler Radar Vehicle Detector

    Sang-Dong KIM  Jong-Hun LEE  

     
    LETTER-Digital Signal Processing

      Vol:
    E94-A No:5
      Page(s):
    1210-1213

    In this paper, we propose a memory-efficient structure for a pulse Doppler radar in order to reduce the hardware's complexity. The conventional pulse Doppler radar is computed by fast frequency transform (FFT) of all range cells in order to extract the velocity of targets. We observed that this method requires a huge amount of memory to perform the FFT processes for all of the range cells. Therefore, instead of detecting the velocity of all range cells, the proposed architecture extracts the velocity of the targets by using the cells related to the moving targets. According to our simulations and experiments, the detection performance of this proposed architecture is 93.5%, and the proposed structure can reduce the hardware's complexity by up to 66.2% compared with the conventional structure.