1-4hit |
Hideki YOSHIKAWA Masahiro KAMINAGA Arimitsu SHIKODA Toshinori SUZUKI
A method of round addition attack on substitution-permutation network (SPN) block ciphers using differential fault analysis (DFA) is presented. For the 128-bit advanced encryption standard (AES), we show that secret keys can be extracted using one correct ciphertext and two faulty ciphertexts. Furthermore, we evaluate the success rate of a round addition DFA attack, experimentally. The proposed method can also be applied to lightweight SPN block cipher such as KLEIN and LED.
Fumihiko SANO Kenji OHKUMA Hideo SHIMIZU Shinichi KAWAMURA
We extend the theorem by Hong et al. which gives the upper bounds of the maximum average differential and linear hull probabilities (MADP and MALHP) for SPN block cipher with optimal or quasi-optimal diffusion layers, to the case of nested SPN (NSPN) cipher. Applying the extended theorem to two NSPN ciphers, Hierocrypt-3 of 128-bit block and Hierocrypt-L1 of 64-bit block, we estimated that MADP and MALHP for 2-round Hierocrypt-3 are bounded by 2-96, and that those for 2-round Hierocrypt-L1 are bounded by 2-48. The extended theorem is also applied to AES, and found that MADP and MALHP are bounded by 2-96 for its 4-round reduced model. The last result outperforms the best previous result 2-92 for 10-round by Keliher et al.
Tadashi DOHI Kouji NOMURA Naoto KAIO Shunji OSAKI
This paper considers two simulation models for simple unreliable file systems with checkpointing and rollback recovery. In Model 1, the checkpoint is generated at a pre-specified time and the information on the main memory since the last checkpoint is back-uped in a secondary medium. On the other hand, in Model 2, the checkpointing is executed at the time when the number of transactions completed for processing is achieved at a pre-determined level. However, it is difficult to treat such models analytically without employing any approximation method, if queueing effects related with arrival and processing of transactions can not be ignored. We apply the generalized stochastic Petri net (GSPN) to represent the stochastic behaviour of systems under two checkpointing schemes. Throughout GSPN simulation, we evaluate quantitatively the maintainability of checkpoint models under consideration and examine the dependence of model parameters in the optimal checkpoint policies and their associated system availabilities.
This letter describes several techniques for optimizing software implementations of E2 on various platforms. We propose optimization techniques for each part of E2; a new inversion algorithm, efficient byte splitting and merging for BP-Function, and an efficient SPN (Substitution-Permutation Network) implementation for 32- or 64-bit processors. As a result, E2 achieves the encryption speeds of 100.5 kb/s, 68.3 Mb/s, 162.3 Mb/s, and 130.8 Mb/s for H8/300 (5 MHz), Pentium Pro (200 MHz), Pentium II (450 MHz), and 21164A (600 MHz).