1-10hit |
The injection locking properties of rotary dissipative solitons developed in a closed traveling-wave field-effect transistor (TWFET) are examined. A TWFET can support the waveform-invariant propagation of solitary pulses called dissipative solitons (DS) by balancing dispersion, nonlinearity, dissipation, and field-effect transistor gain. Applying sinusoidal signals to the closed TWFET assumes the injection-locked behavior of the rotary DS; the solitons' velocity is autonomously tuned to match the rotation and external frequencies. This study clarifies the qualitative properties of injection-locked DS using numerical and experimental approaches.
Yun Jong KIM Hyun-Jeong JO Young Yun CHUN Chang-Soo PARK
We present and demonstrate a novel method of generating a π phase-alternated return-to-zero (RZ) signal together with pulse-amplitude equalization in a rational harmonic mode-locked fiber ring laser, by using a dual-drive Mach-Zehnder modulator. By adjusting the voltages applied to both arms of the modulator, amplitude-equalization and π phase shift can be achieved successfully at a 9.95 GHz repetition rate. The generated alternate-phase RZ signals show enhanced transmission performance in the single-mode fiber (SMF) links without dispersion compensation.
Masahiro TSUCHIYA Koji IGARASHI Satoshi SAITO Masato KISHI
We review recent progresses in our studies on the fiber-optic soliton compression and related subjects with special emphasis on dispersion-flattened fibers (DFFs). As for the ultimately short pulse generation, it has been demonstrated to compress 5 ps laser diode pulses down to 20 fs with a 15.1 m-long single-stage step-like dispersion profiled fiber employed. The compression was brought about through a series of the higher order soliton processes in conjunction with a single and ordinary erbium-doped fiber preamplifier, and DFFs contained at its end played a major role. We have performed intensive investigations on the DFF compression mechanisms in the 100-20 fs range. A fairly reliable model was developed for the higher order soliton propagation along a DFF in the temporal range from 100 down to 30 fs by taking into consideration the higher order nonlinear and dispersion effects as well as incident pulse shape dependence. Through the simulation, parametric spectrum generation originating from the modulation instability gain was pointed out at frequencies apart from the pump wave frequency, which agrees with the experimental observation. Its possible application is also discussed.
Lee J. RICHARDSON Wladek FORYSIAK Nick J. DORAN Keith J. BLOW
We demonstrate, through numerical simulations, the possibility of trans-oceanic single channel transmission at 160 Gbit/s with no active control. This was achieved using short period dispersion management, which supports short pulse propagation at practical map strengths. We demonstrate that through careful selection and optimisation of the system parameters the performance of this system can be extended. We also define the tolerable limits of the system to the residual dispersion slope and polarisation mode dispersion.
Lee J. RICHARDSON Wladek FORYSIAK Nick J. DORAN Keith J. BLOW
We demonstrate, through numerical simulations, the possibility of trans-oceanic single channel transmission at 160 Gbit/s with no active control. This was achieved using short period dispersion management, which supports short pulse propagation at practical map strengths. We demonstrate that through careful selection and optimisation of the system parameters the performance of this system can be extended. We also define the tolerable limits of the system to the residual dispersion slope and polarisation mode dispersion.
Hiroyuki TODA Yoshihisa INADA Yuji KODAMA Akira HASEGAWA
We performed 10 Gbit/s optical soliton transmission experiment over 2,000 km with bit error rate of < 10-9 in a comb-like dispersion profiled fiber (CDPF) loop of 80 km amplifier spacing which corresponds to 1.8 times of dispersion distance. By reducing the average dispersion of the CDPF, error free distance of 3,000 km was obtained.
By sacrificing approximately ten percent of the transmission speed, ultra-high speed optical time division multiplexed network can be fully operatable by the use of currently available electrical switches. The network utilizes dispersion managed quasi-solitons and transmits TDM packet which comprises of ATM cells that are introduced from a gateway through bit compression to match to the ultra-high speed traffics. The network can provide flexible bandwidth and bit on demand at burst rate of the maximum LAN speed.
David J. JONES Hermann A. HAUS Lynn E. NELSON Erich P. IPPEN
In this paper we review the stretched-pulse principle and discuss its inherent advantages for ultrashort pulse generation and transmission. An analytic theory of the stretched-pulse fiber laser is presented and shown to be in good agreement with experimental results. An extension of the stretched-pulse theory is applied to both fiber lasers and dispersion-allocated soliton transmission and then compared to numerical results. We also discuss the design and operation of an environmentally stable stretched-pulse fiber laser.
In this paper, we report the simulation studies on MSW solitons based on numerical solution of nonlinear schrodinger equation by Split Step Fourier Transform method. We have studied both magnetostatic forward volume and surface modes that satisfy opposite nonlinear conditions. The parameters used for the simulation are obtained from experiments on nonlinear characteristics of both the modes. Important soliton properties such as nonlinear power dependence, pulse shaping, formation of multisolitons are studied and compared qualitatively with the experiments.
This paper describes new methematical tools, taken from quantum field theory (QFT), which may make it possible to characterize localized excitations (including solitons, but also including chaotic modes) generated by PDE systems. The significance to computer hardware and neurocomputing is also discussed. This mathematics--IF further developed--may also have the potential to reorganize and simplify our understanding of QFT itself--a topic of very great intellectual and practical importance. The paper concludes by describing three new possibilities for research, which will be very important to achieving these goals.