The search functionality is under construction.

Keyword Search Result

[Keyword] accurate imaging(2hit)

1-2hit
  • Robust and Accurate Ultrasound 3-D Imaging Algorithm Incorporating Adaptive Smoothing Techniques

    Kenshi SAHO  Tomoki KIMURA  Shouhei KIDERA  Hirofumi TAKI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E95-B No:2
      Page(s):
    572-580

    Many researchers have proposed ultrasound imaging techniques for product inspection; however, most of these techniques are aimed at detecting the existence of flaws in products. The acquisition of an accurate three-dimensional image using ultrasound has the potential to be a useful product inspection tool. In this paper we apply the Envelope algorithm, which was originally proposed for accurate UWB (Ultra Wide-Band) radar imaging systems, to ultrasound imaging. We show that the Envelope algorithm results in image deterioration, because it is difficult for ultrasound measurements to achieve high signal to noise (S/N) ratio values as a result of a high level of noise and interference from the environment. To reduce errors, we propose two adaptive smoothing techniques that effectively stabilize the estimated image produced by the Envelope algorithm. An experimental study verifies that the proposed imaging algorithm has accurate 3-D imaging capability with a mean error of 6.1 µm, where the transmit center frequency is 2.0 MHz and the S/N ratio is 23 dB. These results demonstrate the robustness of the proposed imaging algorithm compared with a conventional Envelope algorithm.

  • Fast and Accurate 3-D Imaging Algorithm with Linear Array Antennas for UWB Pulse Radars

    Shouhei KIDERA  Yusuke KANI  Takuya SAKAMOTO  Toru SATO  

     
    PAPER-Sensing

      Vol:
    E91-B No:8
      Page(s):
    2683-2691

    Pulse radars with UWB signals are promising as a high-resolution imaging technique that can be used for the non-destructive measurement of surface details in industrial products such as antennas and aircraft. We have already proposed a fast 3-D imaging algorithm, SEABED, that utilizes a reversible transform between the time delay and the target boundary. However, data acquisition is time-consuming when obtaining an accurate image because it assumes a mono-static radar with 2-D scanning of an antenna. In this paper, we utilize linear array antennas and propose a fast and accurate imaging algorithm. We extend the reversible transform for mono-static radars to apply to bi-static radars to reduce the data acquisition time. The effectiveness of the proposed method is verified with numerical simulations and experiments.