The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] adaptive selection(2hit)

1-2hit
  • Siamese Visual Tracking with Dual-Pipeline Correlated Fusion Network

    Ying KANG  Cong LIU  Ning WANG  Dianxi SHI  Ning ZHOU  Mengmeng LI  Yunlong WU  

     
    PAPER-Image Recognition, Computer Vision

      Pubricized:
    2021/07/09
      Vol:
    E104-D No:10
      Page(s):
    1702-1711

    Siamese visual tracking, viewed as a problem of max-similarity matching to the target template, has absorbed increasing attention in computer vision. However, it is a challenge for current Siamese trackers that the demands of balance between accuracy in real-time tracking and robustness in long-time tracking are hard to meet. This work proposes a new Siamese based tracker with a dual-pipeline correlated fusion network (named as ADF-SiamRPN), which consists of one initial template for robust correlation, and the other transient template with the ability of adaptive feature optimal selection for accurate correlation. By the promotion from the learnable correlation-response fusion network afterwards, we are in pursuit of the synthetical improvement of tracking performance. To compare the performance of ADF-SiamRPN with state-of-the-art trackers, we conduct lots of experiments on benchmarks like OTB100, UAV123, VOT2016, VOT2018, GOT-10k, LaSOT and TrackingNet. The experimental results of tracking demonstrate that ADF-SiamRPN outperforms all the compared trackers and achieves the best balance between accuracy and robustness.

  • Transport Layer Mobility Management across Heterogeneous Wireless Access Networks

    Kazuya TSUKAMOTO  Yoshiaki HORI  Yuji OIE  

     
    PAPER-Network

      Vol:
    E90-B No:5
      Page(s):
    1122-1131

    A transport layer mobility management scheme for handling seamless handoffs between appropriate networks is presented. The future mobile environment will be characterized by multimodal connectivity with dynamic switching. Many technologies have been proposed to support host mobility across diverse wireless networks, and operate in various layers of the network architecture. Our major focus is on the transport protocol that recovers packets lost during handoffs and controls transmission speed to achieve efficient communication. Majority of the existing technologies can maintain the connection by updating the information of a single connection around a handoff. Moreover, none of the studies extensively examine the handoff latencies and focus how an appropriate network is selected, during the handoff. In this paper, we first extensively investigate the various handoff latencies and discuss the limited performance of existing technologies based on the single connection. We then propose a new scheme resolving the problems by the transport protocol enabling the adaptive selection of an appropriate interface based on communication condition among all available interfaces. Finally, we demonstrate that the proposed scheme promptly and reliably selects the appropriate interface, and achieves excellent goodput performance by comparing with the existing technologies.