1-2hit |
Jinwook JUNG Yohei NAKATA Shunsuke OKUMURA Hiroshi KAWAGUCHI Masahiko YOSHIMOTO
This paper presents an adaptive cache architecture for wide-range reliable low-voltage operations. The proposed associativity-reconfigurable cache consists of pairs of cache ways so that it can exploit the recovery feature of the novel 7T/14T SRAM cell. Each pair has two operating modes that can be selected based upon the required voltage level of current operating conditions: normal mode for high performance and dependable mode for reliable low-voltage operations. We can obtain reliable low-voltage operations by application of the dependable mode to weaker pairs that cannot operate reliably at low voltages. Meanwhile leaving stronger pairs in the normal mode, we can minimize performance losses. Our chip measurement results show that the proposed cache can trade off its associativity with the minimum operating voltage. Moreover, it can decrease the minimum operating voltage by 140 mV achieving 67.48% and 26.70% reduction of the power dissipation and energy per instruction. Processor simulation results show that designing the on-chip caches using the proposed scheme results in 2.95% maximum IPC losses, but it can be chosen various performance levels. Area estimation results show that the proposed cache adds area overhead of 1.61% and 5.49% in 32-KB and 256-KB caches, respectively.
Gi-Ho PARK Kil-Whan LEE Tack-Don HAN Shin-Dug KIM
This paper presents a dual data cache system structure, called a cooperative cache system, that is designed as a low power cache structure for embedded processors. The cooperative cache system consists of two caches, i.e., a direct-mapped temporal oriented cache (TOC) and a four-way set-associative spatial oriented cache (SOC). The cooperative cache system achieves improvement in performance and reduction in power consumption by virtue of the structural characteristics of the two caches designed inherently to help each other. An evaluation chip of an embedded processor having the cooperative cache system is manufactured by Samsung Electronics Co. with 0.25 µm 4-metal process technology.