The search functionality is under construction.

Keyword Search Result

[Keyword] basis functions(7hit)

1-7hit
  • Analysis of a Wireless Power Transfer System by the Impedance Expansion Method Using Fourier Basis Functions

    Nozomi HAGA  Masaharu TAKAHASHI  

     
    PAPER-Antennas and Propagation

      Pubricized:
    2018/01/18
      Vol:
    E101-B No:7
      Page(s):
    1708-1715

    The impedance expansion method (IEM), which has been previously proposed by the authors, is a circuit-modeling technique for electrically-very-small devices. This paper provides a new idea on the principle of undesired radiation in wireless power transfer systems by employing IEM. In particular, it is shown that the undesired radiation is due to equivalent infinitesimal dipoles and loops of the currents on the coils.

  • Particle Swarm Optimization Assisted Multiuser Detection along with Radial Basis Function

    Muhammad ZUBAIR  Muhammad Aamir Saleem CHOUDHRY  Aqdas Naveed MALIK  Ijaz Mansoor QURESHI  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:7
      Page(s):
    1861-1863

    In this work particle swarm optimization (PSO) aided with radial basis functions (RBF) has been suggested to carry out multiuser detection (MUD) for synchronous direct sequence code division multiple access (DS-CDMA) systems. The performance of the proposed algorithm is compared to that of other standard suboptimal detectors and genetic algorithm (GA) assisted MUD. It is shown to offer better performance than the others especially if there are many users.

  • Large-Size Local-Domain Basis Functions with Phase Detour and Fresnel Zone Threshold for Sparse Reaction Matrix in the Method of Moments

    Tetsu SHIJO  Takuichi HIRANO  Makoto ANDO  

     
    PAPER-EM Analysis

      Vol:
    E88-C No:12
      Page(s):
    2208-2215

    Locality in high frequency diffraction is embodied in the Method of Moments (MoM) in view of the method of stationary phase. Local-domain basis functions accompanied with the phase detour, which are not entire domain but are much larger than the segment length in the usual MoM, are newly introduced to enhance the cancellation of mutual coupling over the local-domain; the off-diagonal elements in resultant reaction matrix evanesce rapidly. The Fresnel zone threshold is proposed for simple and effective truncation of the matrix into the sparse band matrix. Numerical examples for the 2-D strip and the 2-D corner reflector demonstrate the feasibility as well as difficulties of the concept; the way mitigating computational load of the MoM in high frequency problems is suggested.

  • A Design of a Leaky Waveguide Crossed-Slot Linear Array with a Matching Element by the Method of Moments with Numerical-Eigenmode Basis Functions

    Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antennas and Propagation

      Vol:
    E88-B No:3
      Page(s):
    1219-1226

    A waveguide crossed-slot linear array with a matching element is accurately analyzed and designed by the method of moments using numerical-eigenmode basis functions developed by the authors. The rounded ends of crossed-slots are accurately modeled in the analysis. The initial values of the slot parameters determined by a model with assumption of periodicity of field are modified and refined by the full-wave finite-array analysis for uniform excitation and small axial ratio. As an example, an 8-element linear array is designed at 11.85 GHz, which radiates a circularly polarized wave at a beam-tilting angle of 50 degrees. The radiation pattern, the frequency characteristics of the reflection and the axial ratio are compared between the analysis and the measurement and they agree very well. The calculated and measured axial ratio at the beam direction are 0.1 dB and 1.7 dB, respectively. This method provides a basic and powerful design tool for slotted waveguide arrays.

  • Analysis of a Waveguide with a Round-Ended Wide Straight Slot by the Method of Moments Using Numerical-Eigenmode Basis Functions

    Miao ZHANG  Takuichi HIRANO  Jiro HIROKAWA  Makoto ANDO  

     
    PAPER-Antenna and Propagation

      Vol:
    E87-B No:8
      Page(s):
    2319-2326

    A round-ended wide straight slot cut in the broad wall of a rectangular waveguide is analyzed by the Method of Moments (MoM) using numerical eigenmode basis functions derived by the edge-based finite element method (FEM), referred to as MoM/FEM. The frequency characteristics of the calculated transmission coefficients are compared with the measured ones, and good agreement is observed for a wide variety of antenna parameters. For simpler analysis that does not use MoM/FEM, an equivalent rectangular slot approximation for a round-ended slot is discussed. The resonant frequencies of empirically introduced "equal-area" and "equal-perimeter" slots are compared with those of round-ended slots for a wide variety of parameters such as slot width, wall thickness and dielectric constant inside the waveguide. Based upon MoM/FEM, which can be a reliable reference, it is found that the equal-area slot always gives a better approximation of the order of 1% over that of the equal-perimeter one which is of the order of 5%. For higher accuracy, a new rectangular slot approximation of a round-ended slot is proposed to be a linear combination of equal-area and equal perimeter approximation. The error is around 0.25% for a wide variety of parameters such as slot width-to-length ratio, wall thickness and dielectric constant of the filling material inside the waveguide.

  • The Determination of the Evoked Potential Generating Mechanism Based on Radial Basis Neural Network Model

    Rustu Murat DEMIRER  Yukio KOSUGI  Halil Ozcan GULCUR  

     
    LETTER-Biocybernetics, Neurocomputing

      Vol:
    E83-D No:9
      Page(s):
    1819-1823

    This paper investigates the modeling of non-linearity on the generation of the single trial evoked potential signal (s-EP) by means of using a mixed radial basis function neural network (M-RBFN). The more emphasis is put on the contribution of spontaneous EEG term to s-EP signal. The method is based on a nonlinear M-RBFN neural network model that is trained simultaneously with the different segments of EEG/EP data. Then, the output of the trained model (estimator) is a both fitted and reduced (optimized) nonlinear model and then provide a global representation of the passage dynamics between spontaneous brain activity and poststimulus periods. The performance of the proposed neural network method is evaluated using a realistic simulation and applied to a real EEG/EP measurement.

  • Piecewise-Linear Radial Basis Functions in Signal Processing

    Carlos J. PANTALEÓN-PRIETO  Aníbal R. FIGUEIRAS-VIDAL  

     
    LETTER

      Vol:
    E77-A No:9
      Page(s):
    1493-1496

    In this paper we introduce the Piecewise Linear Radial Basis Function Model (PWL-RBFM), a new nonlinear model that uses the well known RBF framework to build a PWL functional approximation by combining an l1 norm with a linear RBF function. A smooth generalization of the PWL-RBF is proposed: it is obtained by substituting the modulus function with the logistic function. These models are applied to several time series prediction tasks.