1-2hit |
Takuma YASUDA Nobuhiko OZAKI Hiroshi SHIBATA Shunsuke OHKOUCHI Naoki IKEDA Hirotaka OHSATO Eiichiro WATANABE Yoshimasa SUGIMOTO Richard A. HOGG
We developed an electrically driven near-infrared broadband light source based on self-assembled InAs quantum dots (QDs). By combining emissions from four InAs QD ensembles with controlled emission center wavelengths, electro-luminescence (EL) with a Gaussian-like spectral shape and approximately 85-nm bandwidth was obtained. The peak wavelength of the EL was blue-shifted from approximately 1230 to 1200 nm with increased injection current density (J). This was due to the state-filling effect: sequential filling of the discrete QD electron/hole states by supplied carriers from lower (ground state; GS) to higher (excited state; ES) energy states. The EL intensities of the ES and GS emissions exhibited different J dependence, also because of the state-filling effect. The point-spread function (PSF) deduced from the Fourier-transformed EL spectrum exhibited a peak without apparent side lobes. The half width at half maximum of the PSF was 6.5 µm, which corresponds to the estimated axial resolution of the optical coherence tomography (OCT) image obtained with this light source. These results demonstrate the effectiveness of the QD-based device for realizing noise-reduced high-resolution OCT.
This paper presents a new operation and maintenance system for PON (Passive Optical Network) subscriber loops and an assessment of its feasibility through experiments. This system adopts a broadband continuous wave light source as a testing signal and a fiber grating filter as a reflective component. The fiber grating filter is inserted somewhere in each subscriber loop for reflection of the testing signal. Our results show that the proposed system operates well for the purposes of quick decision of loop state and easy testing for PON subscriber loops.