The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] chain model(7hit)

1-7hit
  • Performance Analysis of Full Duplex MAC protocols for Wireless Local Area Networks with Hidden Node Collisions

    Kosuke SANADA  Kazuo MORI  

     
    PAPER-Terrestrial Wireless Communication/Broadcasting Technologies

      Pubricized:
    2019/12/25
      Vol:
    E103-B No:7
      Page(s):
    804-814

    Full duplex (FD) communication can potentially double the throughput of a point-to-point link in wireless communication. Additionally, FD communication can mitigate the hidden node collision problem. The MAC protocols for FD communications are classified into two types; synchronous FD MAC and asynchronous one. Though the synchronous FD MAC mitigates hidden node collisions by using control frame, overhead duration for each data frame transmission may be a bottleneck for the networks. On the other hand, the asynchronous FD MAC mitigates the hidden node collisions by FD communication. However, it wastes more time due to transmission failure than synchronous FD MAC. Clarifying the effect of two major FD MAC types on networks requires a quantitative evaluation of the effectiveness of these protocols in networks with hidden node collisions. This paper proposes performance analysis of FD MAC protocols for wireless local area networks with hidden node collisions. Through the proposed analytical model, the saturated throughputs in FD WLANs with both asynchronous and synchronous FD MAC for any number of STAs and any payload size can be obtained.

  • Analytical Expressions for End-to-End Throughput of String-Topology Wireless Full-Duplex Multi-Hop Networks

    Chikara FUJIMURA  Kosuke SANADA  Kazuo MORI  

     
    PAPER-Network

      Pubricized:
    2018/12/25
      Vol:
    E102-B No:6
      Page(s):
    1160-1169

    Wireless Full-Duplex (FD) communication can double the point-to-point throughput. To obtain the full benefits of the FD technique in multi-hop networks, its potential throughput performance in multi-hop networks should be clarified qualitatively and quantitatively. Developing an analytical model for FD multi-hop networks is effective and useful for not only clarifying such network dynamics but also developing the optimal protocol design. However, generalized analytical expression for the end-to-end throughput of FD multi-hop networks has not been proposed. This paper proposes analytical expressions for the end-to-end throughput of string-topology wireless FD multi-hop networks. Our approach is to integrate with the analytical model of the airtime expression, which is an effective analytical approach of the throughput analysis for Half-Duplex (HD) multi-hop networks, and the Markov-chain model considering the FD MAC operation. The proposed model clarify the detailed effect of the FD MAC operation on the throughput performance in multi-hop networks. In particular, it can obtain the end-to-end throughput of FD multi-hop networks for arbitrary number of hops, arbitrary payload size and arbitrary value of the minimum contention window. The analytical expressions verified by comparisons with the simulation results. From the comparisons with the results in HD multi-hop networks, we confirm the effectiveness of the FD communication in multi-hop networks.

  • The Chain Effect for the Reputation-Based Trust Model in Peer-to-Peer Computing

    Sinjae LEE  Wonjun LEE  

     
    LETTER-Privacy

      Vol:
    E95-D No:1
      Page(s):
    177-180

    This letter analyzes a resource chain trust model for P2P reputation-based systems. Many researchers have given a lot of efforts to reputation-based system area and some of them have made good theoretical models. Problems are to spread malicious contents whereas the remark that such models only concentrate on the relationship between the node and its direct neighbors is still controversial. To solve the problems, we introduced the RCM (Resource Chain Model) and the Enhanced RCM. In this letter, we analyze the models and then show usage of our models can help us to find the best and safest location efficiently and decrease the number of malicious transaction.

  • A Novel Framework for Spectrum Sensing in Cognitive Radio Networks

    Navid TAFAGHODI KHAJAVI  Siavash SADEGHI IVRIGH  Seyed Mohammad-Sajad SADOUGH  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E94-B No:9
      Page(s):
    2600-2609

    Cognitive radio (CR) is a key solution for the problem of inefficient usage of spectral resources. Spectrum sensing in each CR aims at detecting whether a preassigned spectrum band is occupied by a primary user or not. Conventional techniques do not allow the CR to communicate with its own base station during the spectrum sensing process. So, only a part of the frame can be used for cognitive data transmission. In this paper, we introduce a new spectrum sensing framework that combines a blind source separation technique with conventional spectrum sensing techniques. In this way, the cognitive transmitter can continue to transmit during spectrum sensing, if it was in operation in the previous frame. Moreover, the accuracy is improved since the decision made by the spectrum unit in each frame depends on the decision made in the previous frame. We use Markov chain tools to model the behavior of our spectrum sensing proposal and to derive the parameters that characterize its performance. Numerical results are provided to confirm the superiority of the proposed technique compared to conventional spectrum sensing techniques.

  • Link Availability Based Mobility-Aware Max-Min Multi-Hop Clustering (M4C) for Mobile Ad Hoc Networks

    Yuebin BAI  Jun HUANG  Qingmian HAN  Depei QIAN  

     
    PAPER-Network

      Vol:
    E92-B No:10
      Page(s):
    3132-3142

    Mobile Ad Hoc Networks (MANETs) have inherently dynamic topologies. Due to the distributed, multi-hop nature of these networks, random mobility of nodes not only affects the availability of radio links between particular node pairs, but also threatens the reliability of communication paths, service discovery, even quality of service of MANETs. In this paper, a novel Markov chain model is presented to predict link availability for MANETs. Based on a rough estimation of the initial distance between two nodes, the proposed approach is able to accurately estimate link availability in a random mobility environment. Furthermore, the proposed link availability estimation approach is integrated into Max-Min d-clustering heuristic. The enhanced clustering heuristic, called M4C, takes node mobility into account when it groups mobile nodes into clusters. Simulation results are given to verify the approach and the performance improvement of clustering algorithm. It also demonstrates the adaptability of M4C, and shows that M4C is able to achieve a tradeoff between the effectiveness of topology aggregation and cluster stabilities. The proposed algorithm can also be used to improve the availability and quality of services for MANETs.

  • Study of Medium Access Delay in IEEE 802.11 Wireless Networks

    Liang ZHANG  Yantai SHU  Oliver YANG  Guanghong WANG  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E89-B No:4
      Page(s):
    1284-1293

    With the rising popularity of delay-sensitive real-time multimedia applications (video, voice, and data) in IEEE 802.11 wireless local area networks (WLANs), it is becoming important to study the medium access control (MAC) layer delay performance of WLANs. The MAC layer delay can be classified into two categories: 1) medium access delay, and 2) delay at interface queue (IFQ). In this paper, based on a two-dimensional chain model, we analyze the medium access delay and give a method to calculate the IFQ delay. The proposed analysis is applicable to both the basic access and the RTS/CTS access mechanisms. Through extensive simulations, we evaluate our model. The simulation results show that our analysis is extremely accurate for both basic access and RTS/CTS access mechanism of the 802.11 DCF protocol.

  • Performance Analysis of Oversampling Data Recovery Circuit

    Jin-Ku KANG  

     
    PAPER

      Vol:
    E82-A No:6
      Page(s):
    958-964

    In this paper an analysis on the oversampling data recovery circuit is presented. The input waveform is assumed to be non-return-zero (NRZ) binary signals. A finite Markov chain model is used to evaluate the steady-state phase jitter performance. Theoretical analysis enables us to predict the input signal-to-noise ratio (SNR) versus bit error rate (BER) of the oversampling data recovery circuit for various oversampling ratios. The more number of samples per single bit results in the better performance on BER at the same input SNR. To achieve 10-11 BER, 8 times oversampling has about 2 dB input signal penalty compared to 16 times oversampling. In an architectural choice of the oversampling data recovery circuit, the recovered clock can be updated in each data bit or in every multiple bits depending on the input data rate and input noise. Two different clock update schemes were analyzed and compared. The scheme updating clock in every data bit has about 1.5 dB penalty against the multiple bits (4 bits) clock updating scheme with 16 times oversampling in white noise dominant input data. The results were applied to the fabricated circuits to validate the analysis.