The search functionality is under construction.

Keyword Search Result

[Keyword] circulating current(3hit)

1-3hit
  • Research on Stability of MMC-Based Medium Voltage DC Bus on Ships Based on Lyapunov Method Open Access

    Liang FANG  Xiaoyan XU  Tomasz TARASIUK  

     
    PAPER

      Pubricized:
    2022/05/09
      Vol:
    E105-C No:11
      Page(s):
    675-683

    Modular multilevel converters (MMCs) are an emerging and promising option for medium voltage direct current (MVDC) of all- electric ships. In order to improve the stability of the MVDC transmission system for ships, this paper presents a new control inputs-based Lyapunov strategy based on feedback linearization. Firstly, a set of dynamics equations is proposed based on separating the dynamics of AC-part currents and MMCs circulating currents. The new control inputs can be obtained by the use of feedback linearization theory applied to the dynamic equations. To complete the dynamic parts of the new control inputs from the viewpoint of MVDC system stability, the Lyapunov theory is designed some compensators to demonstrate the effects of the new control inputs on the MMCs state variable errors and its dynamic. In addition, the carrier phase shifted modulation strategy is used because of applying the few number of converter modules to the MVDC system for ships. Moreover, relying on the proposed control strategy, a simulation model is built in MATLAB/SIMULINK software, where simulation results are utilized to verify the validity of proposed control strategy in the MMC-based MVDC system for ships.

  • New Switching Control for Synchronous Rectifications in Low-Voltage Paralleled Converter System without Voltage and Current Fluctuations

    Hiroshi SHIMAMORI  Teruhiko KOHAMA  Tamotsu NINOMIYA  

     
    PAPER-Electronic Circuits

      Vol:
    E88-C No:3
      Page(s):
    395-402

    Paralleled converter system with synchronous rectifiers (SRs) causes several problems such as surge voltage, inhalation current and circulating current. Generally, the system stops operation of the SRs in light load to avoid these problems. However, simultaneously, large voltage fluctuations in the output of the modules are occurred due to forward voltage drop of diode. The fluctuations cause serious faults to the semiconductor devices working in very low voltage such as CPU and VLSI. Moreover, the voltage fluctuations generate unstable current fluctuations in the paralleled converter system with current-sharing control. This paper proposes new switching control methods for rectifiers to reduce the voltage and current fluctuations. The effectiveness of the proposed methods is confirmed by computer simulation and experimental results.

  • High-Frequency Isolated Soft-Switching Phase-Shift PWM DC-DC Power Converter Using Tapped Inductor Filter

    Sergey MOISEEV  Koji SOSHIN  Mutsuo NAKAOKA  

     
    PAPER-DC/DC Converters

      Vol:
    E87-B No:12
      Page(s):
    3561-3567

    In this paper, a novel type of the step-up high frequency transformer linked full-bridge soft-switching phase-shift PWM DC-DC power converter with ZVS and ZCS bridge legs is proposed for small scale fuel cell power generation systems, automotive AC power supplies. A tapped inductor filter with a freewheeling diode is implemented in the proposed soft-switching DC-DC power converter to minimize the circulating current in the high-frequency step-up transformer primary side and high-frequency inverter stage. Using a tapped inductor filter with a freewheeling diode makes possible to reduce the circulating current without any active switches and theirs gate-drive circuits. The operating principle of the proposed DC-DC power converter with each operation mode during a half cycle of the steady state operation is explained. The optimum design of the tapped inductor turns ratio is described on the basis of the circuit simulation results. Developing 1 kW 100 kHz prototype with power MOSFETs and 36 V DC source verifies the practical effectiveness of the proposed soft-switching DC-DC power converter. The actual efficiency of the proposed DC-DC power converter is obtained 94% for the wide load and output voltage variation ranges.