The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] computer-aided detection(2hit)

1-2hit
  • An Automatic Detection Method for Carotid Artery Calcifications Using Top-Hat Filter on Dental Panoramic Radiographs

    Tsuyoshi SAWAGASHIRA  Tatsuro HAYASHI  Takeshi HARA  Akitoshi KATSUMATA  Chisako MURAMATSU  Xiangrong ZHOU  Yukihiro IIDA  Kiyoji KATAGI  Hiroshi FUJITA  

     
    LETTER-Artificial Intelligence, Data Mining

      Vol:
    E96-D No:8
      Page(s):
    1878-1881

    The purpose of this study is to develop an automated scheme of carotid artery calcification (CAC) detection on dental panoramic radiographs (DPRs). The CAC is one of the indices for predicting the risk of arteriosclerosis. First, regions of interest (ROIs) that include carotid arteries are determined on the basis of inflection points of the mandibular contour. Initial CAC candidates are detected by using a grayscale top-hat filter and a simple grayscale thresholding technique. Finally, a rule-based approach and a support vector machine to reduce the number of false positive (FP) findings are applied using features such as area, location, and circularity. A hundred DPRs were used to evaluate the proposed scheme. The sensitivity for the detection of CACs was 90% with 4.3 FPs (80% with 1.9 FPs) per image. Experiments show that our computer-aided detection scheme may be useful to detect CACs.

  • Detection System of Clustered Microcalcifications on CR Mammogram

    Hideya TAKEO  Kazuo SHIMURA  Takashi IMAMURA  Akinobu SHIMIZU  Hidefumi KOBATAKE  

     
    PAPER-Biological Engineering

      Vol:
    E88-D No:11
      Page(s):
    2591-2602

    CR (Computed Radiography) is characterized by high sensitivity and wide dynamic range. Moreover, it has the advantage of being able to transfer exposed images directly to a computer-aided detection (CAD) system which is not possible using conventional film digitizer systems. This paper proposes a high-performance clustered microcalcification detection system for CR mammography. Before detecting and classifying candidate regions, the system preprocesses images with a normalization step to take into account various imaging conditions and to enhance microcalcifications with weak contrast. Large-scale experiments using images taken under various imaging conditions at seven hospitals were performed. According to analysis of the experimental results, the proposed system displays high performance. In particular, at a true positive detection rate of 97.1%, the false positive clusters average is only 0.4 per image. The introduction of geometrical features of each microcalcification for identifying true microcalcifications contributed to the performance improvement. One of the aims of this study was to develop a system for practical use. The results indicate that the proposed system is promising.