The search functionality is under construction.

Keyword Search Result

[Keyword] continuous-time systems(4hit)

1-4hit
  • An LMI Approach to Computing Delayed Perturbation Bounds for Stabilizing Receding Horizon H Controls

    ChoonKi AHN  SooHee HAN  

     
    LETTER-Systems and Control

      Vol:
    E91-A No:3
      Page(s):
    879-882

    This letter presents new delayed perturbation bounds (DPBs) for stabilizing receding horizon H∞ control (RHHC). The linear matrix inequality (LMI) approach to determination of DPBs for the RHHC is proposed. We show through a numerical example that the RHHC can guarantee an H∞ norm bound for a larger class of systems with delayed perturbations than conventional infinite horizon H∞ control (IHHC).

  • Discrete Modelling of Continuous-Time Systems Having Interval Uncertainties Using Genetic Algorithms

    Chen-Chien HSU  Tsung-Chi LU  Heng-Chou CHEN  

     
    PAPER-Systems and Control

      Vol:
    E91-A No:1
      Page(s):
    357-364

    In this paper, an evolutionary approach is proposed to obtain a discrete-time state-space interval model for uncertain continuous-time systems having interval uncertainties. Based on a worst-case analysis, the problem to derive the discrete interval model is first formulated as multiple mono-objective optimization problems for matrix-value functions associated with the discrete system matrices, and subsequently optimized via a proposed genetic algorithm (GA) to obtain the lower and upper bounds of the entries in the system matrices. To show the effectiveness of the proposed approach, roots clustering of the characteristic equation of the obtained discrete interval model is illustrated for comparison with those obtained via existing methods.

  • Delayed Perturbation Bounds for Receding Horizon Controls

    ChoonKi AHN  PyungSoo KIM  

     
    LETTER-Systems and Control

      Vol:
    E90-A No:8
      Page(s):
    1704-1706

    This letter presents delayed perturbation bounds (DPBs) for receding horizon controls (RHCs) of continuous-time systems. The proposed DPBs are obtained easily by solving convex problems represented by linear matrix inequalities (LMIs). We show, by numerical examples, that the RHCs have larger DPBs than conventional linear quadratic regulators (LQRs).

  • Design of Linear Continuous-Time Stochastic Estimators Using Covariance Information in Krein Spaces

    Seiichi NAKAMORI  

     
    PAPER-Systems and Control

      Vol:
    E84-A No:9
      Page(s):
    2261-2271

    This paper proposes new recursive fixed-point smoother and filter using covariance information in linear continuous-time stochastic systems. To be able to treat the stochastic signal estimation problem, a performance criterion, extended from the criterion in the H filtering problem by introducing the stochastic expectation, is newly introduced in this paper. The criterion is transformed equivalently into a min-max principle in game theory, and an observation equation in the Krein spaces is obtained as a result. For γ2<, the estimation accuracies of the fixed-point smoother and the filter are superior to the recursive least-squares (RLS) Wiener estimators previously designed in the transient estimation state. Here, γ represents a parameter in the proposed criterion. This paper also presents the fixed-point smoother and the filter using the state-space parameters from the devised estimators using the covariance information.