The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] coupled lines(7hit)

1-7hit
  • A Novel Directional Coupler Loaded with Feedback Capacitances and Its Applications

    Motomi ABE  Yukihiro TAHARA  Tetsu OWADA  Naofumi YONEDA  Hiroaki MIYASHITA  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E99-C No:1
      Page(s):
    85-94

    A novel directional coupler loaded with feedback capacitances on the coupled lines is presented. Its effect of enhancing the coupling is qualitatively shown by deriving an equation for the coupling. Besides, a method to compensate for the phase difference between the even and odd modes of the coupler is presented. To demonstrate, a novel tandem 3-dB coupler consisting of the proposed coupled lines is designed and described. In addition, a waveguide (rectangular coaxial line) 8×8 HYB matrix using planar double-layer structure that is composed of the proposed tandem 3-dB couplers and branch-line couplers, which is operated in S-band, is designed and fabricated showing excellent performance.

  • Ultra-Wideband Bandpass Filter with Sharp Attenuation Slope Using Inter-Digital Finger Resonator and Parallel-Coupled Lines

    Takenori YASUZUMI  Yusuke OMOTE  Tomoki UWANO  Osamu HASHIMOTO  

     
    PAPER-Electronic Circuits

      Vol:
    E95-C No:2
      Page(s):
    268-274

    This paper presents an ultra-wideband (UWB) bandpass filter (BPF) with sharp attenuation slope characteristics. The circuit structure consists of an inter-digital finger resonator, parallel-coupled lines and phase matching line. The design of the bandwidth was described by using the even and odd mode characteristic impedances in the resonator structure. The parallel-coupled lines were also designed in the same manner. The parameters of the resonator and two parallel-coupled lines in combination as the BPF were then optimized by the simulation with HFSS. The designed BPF was experimentally fabricated and its measured performances showed the bandwidth from 3.6 to 10 GHz with the 20 dB outband rejection. For the U.S. UWB band design, the matching line was inserted between the two parallel-coupled lines. The matching at both band edges was then qualitatively analyzed on the smithchart. The HFSS simulation results of the structure realized the bandwidth from 3.1 to 10.6 GHz with sharp attenuation slope characteristics for SWR < 2.0. The measurement results agree well with the simulation results.

  • Spurious Suppression and Design Based on Microstrip Open Loop Ring Resonator Bandpass Filters

    Pichai ARUNVIPAS  Chokchai SANGDAO  Ravee PHROMLOUNGSRI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E94-C No:9
      Page(s):
    1447-1454

    This paper presents novel structures of band-pass filters using two configurations of open loop ring resonators (OPLRR): a resonator with embedded quadruply-stepped impedance transmission lines (QSITL) in coupled lines, and a stepped impedance resonator (SIR). Both types of OPLRR have the capability of suppressing the second spurious response and shifting the third spurious response to a higher frequency as well. To demonstrate the performances of both proposed resonators, two sections of each structure with cascaded and crossed configurations at an operating frequency of 0.9 GHz are presented. Both methodologies are easy to design and implement. The methodology with a SIR has a better performance than the SITL. The measurement results of the proposed circuits are in full agreement with the simulated prediction results.

  • Parallel Coupled Microstrip Couplers Compensated with Periodic Floating-Conductors on Coupled Edges

    Takao FUJII  Isao OHTA  Tadashi KAWAI  Yoshihiro KOKUBO  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E91-C No:5
      Page(s):
    780-787

    This paper presents a new quarter-wavelength microstrip coupler compensated with a periodic sequence of floating metallic strips in the slots on the inner edges. After describing the characteristics of the coupled-line, as an example, a 15-dB coupler is designed and a high directivity of 30 dB or more in theory is obtained over a full band of a single-section coupler. Next, couplers with various coupling factors are designed, and the usefulness for very loose coupling is demonstrated. Furthermore, a three-section coupler is designed to show the effectiveness in a wide frequency range. The validity of the design concept and procedure is confirmed by electromagnetic simulations and experiments.

  • A Broadband Rat-Race Ring Coupler with Tightly Coupled Lines

    In-ho KANG  Kai WANG  

     
    LETTER-Devices/Circuits for Communications

      Vol:
    E88-B No:10
      Page(s):
    4087-4089

    In this paper, we propose a broadband 3-dB rat-race ring coupler that uses tightly coupled lines. An aperture compensation technique that can simplify the fabrication of tightly coupled lines, is also discussed here. The effective bandwidth of the proposed rat-race coupler with a return loss better than -20 dB can be increased by 14.3%, in comparison with that of March's. Its isolation is always below -20 dB and the phase shift errors less than 6.

  • Ultrafast Gating Circuit Using Coupled Waveguides

    Koichi NARAHARA  Taiichi OTSUJI  

     
    PAPER-Microwaves, Millimeter-Waves

      Vol:
    E83-C No:1
      Page(s):
    98-108

    A novel electrical gating circuit is proposed for ultrafast applications in electronics. The circuit employs a two-conductor coupled line, and does not have any active devices such as transistors or diodes. Hence, the ultimate speed of the circuit is limited only by the cutoff frequency of the lines employed. The authors describe the circuit theory and discuss the results of experiments that involved ultrafast measurement using electro-optic sampling techniques. The latter suggests the potential of the circuit to achieve the gatings of at least 80-Gbit/s.

  • Crosstalk Analysis of High-Speed Logic Circuits

    Mahmoud OMID  Yoshio KAMI  Masashi HAYAKAWA  

     
    PAPER

      Vol:
    E80-B No:5
      Page(s):
    678-685

    This paper presents a theory based on combined differential- and common-mode propagation for crosstalk and transient analysis of pairs of asymmetric coupled interconnects with arbitrary time-invariant linear termination circuits. Time-domain solutions are obtained by an exact numerical inversion of Laplace transform (NILT). Two example circuits (coupled coplanar stripline and microstrip structures) are studied to examine the accuracy and efficiency of the present method.