The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] decimator(2hit)

1-2hit
  • A New Five-Bit 128-Tone Sigma-Delta Modulation D/A and A/D Converters for UWB-OFDM Transceiver

    Jeich MAR  You-Rong LIN  

     
    PAPER-Devices/Circuits for Communications

      Vol:
    E91-B No:1
      Page(s):
    183-196

    For the purpose of reducing the quantization noise and power consumption of UWB-OFDM transceiver, a new time domain-based interpolator and decimator structure is proposed to realize five-bit D/A and A/D converters in the five-bit 128-tone sigma-delta modulation (SDM) UWB-OFDM transceiver. The five-bit 128-tone SDM UWB-OFDM transceiver using time domain-based interpolator and decimator in place of time spreader and de-spreader can obtain time-domain spread spectrum processing gain and reduce quantization noise simultaneously. The structure of the five-bit 128-tone SDM A/D converter, which employs 32 parallel analog SDM circuits without up-sampling, is designed. Simulation results demonstrate that BER of the proposed five-bit 128-tone SDM D/A and A/D converters based on time domain-based interpolator and decimator scheme can satisfy the performance requirements of the five-bit 128-tone SDM UWB-OFDM transceiver for the QPSK, 16-QAM and 64-QAM modulations.

  • A New Multistage Comb-Modified Rotated Sinc (RS) Decimator with Sharpened Magnitude Response

    Gordana Jovanovic DOLECEK  Sanjit K. MITRA  

     
    PAPER-Digital Signal Processing

      Vol:
    E88-D No:7
      Page(s):
    1331-1339

    This paper presents a new multistage comb-rotated sinc (RS) decimator with a sharpened magnitude response. Novelty of this paper is that the multistage structure has more design parameters that provides additional flexibility to the design procedure. It uses different sharpening polynomials and different cascaded comb filters at different stages. As the comb filters at the latter stages are of lower order than that of the original comb filter, the use of more complex sharpening polynomials at latter stages is possible. This leads to an improvement of the frequency characteristic without a significant increase in the complexity of the overall filter. The comb filter of the first stage is realized in a non-recursive form and can be implemented in a computationally efficient form by making use of the polyphase decomposition of the transfer function in which the subfilters operate at a lower rate that depends on the down-sampling factor employed in the first stage. In addition, both multipliers of the rotated sinc (RS) filter of the second stage work at a lower rate.