The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] deep level(2hit)

1-2hit
  • Two-Dimensional Cyclic Bias Device Simulator and Its Application to GaAs HJFET Pulse Pattern Effect Analysis

    Yuji TAKAHASHI  Kazuaki KUNIHIRO  Yasuo OHNO  

     
    PAPER

      Vol:
    E82-C No:6
      Page(s):
    917-923

    A device simulator that simulates device performance in the cyclic bias steady state was developed, and it was applied to GaAs hetero-junction FET (HJFET) pulse pattern effect. Although there is a large time-constant difference between the pulse signals and deep trap reactions, the simulator searches the cyclic bias steady states at about 30 iterations. A non-linear shift in the drain current level with the mark ratio was confirmed, which has been estimated from the rate equation of electron capture and emission based on Shockley-Read-Hall statistics for deep traps.

  • Computer-Aided Analysis of GaAs MESFETs with p-Buffer Layer on the Semi-Insulating Substrate

    Kazushige HORIO  Naohisa OKUMURA  

     
    PAPER

      Vol:
    E75-C No:10
      Page(s):
    1140-1145

    GaAs MESFETs with a p-buffer layer (or a buried p-layer) are important devices for high-speed GaAs ICs. To study what conditions are required as a good substrate for ICs, we have investigated, by two-dimensional simulation, small-signal parameters and drain-current transients of GaAs MESFETs with a p-buffer layer on the semi-insulating substrate. It is shown that the introduction of a p-buffer layer is effective to improve the transconductance and the cuttoff frequeycy. These parameters are not degrade even if the p-layer doping is increased and a neurtral p-region exists. It is also shown that drain-current drifts and hysteresis in I-V curves can occur in a case with a p-buffer layer, too. It is concluded that the introduction of a relatively highly-doped p-layer on a substrate with low acceptor and electron trap (EL2) densities is effective to realize the stable and high performance of GaAs MESFETs.