The search functionality is under construction.

Keyword Search Result

[Keyword] depth image(7hit)

1-7hit
  • Depth Image Noise Reduction and Super-Resolution by Pixel-Wise Multi-Frame Fusion

    Masahiro MURAYAMA  Toyohiro HIGASHIYAMA  Yuki HARAZONO  Hirotake ISHII  Hiroshi SHIMODA  Shinobu OKIDO  Yasuyoshi TARUTA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/03/04
      Vol:
    E105-D No:6
      Page(s):
    1211-1224

    High-quality depth images are required for stable and accurate computer vision. Depth images captured by depth cameras tend to be noisy, incomplete, and of low-resolution. Therefore, increasing the accuracy and resolution of depth images is desirable. We propose a method for reducing the noise and holes from depth images pixel by pixel, and increasing resolution. For each pixel in the target image, the linear space from the focal point of the camera through each pixel to the existing object is divided into equally spaced grids. In each grid, the difference from each grid to the object surface is obtained from multiple tracked depth images, which have noisy depth values of the respective image pixels. Then, the coordinates of the correct object surface are obtainable by reducing the depth random noise. The missing values are completed. The resolution can also be increased by creating new pixels between existing pixels and by then using the same process as that used for noise reduction. Evaluation results have demonstrated that the proposed method can do processing with less GPU memory. Furthermore, the proposed method was able to reduce noise more accurately, especially around edges, and was able to process more details of objects than the conventional method. The super-resolution of the proposed method also produced a high-resolution depth image with smoother and more accurate edges than the conventional methods.

  • A Simple Depth-Key-Based Image Composition Considering Object Movement in Depth Direction

    Mami NAGOYA  Tomoaki KIMURA  Hiroyuki TSUJI  

     
    LETTER-Computer Graphics

      Vol:
    E103-A No:12
      Page(s):
    1603-1608

    A simple depth-key-based image composition is proposed, which uses two still images with depth information, background and foreground object. The proposed method can place the object at various locations in the background considering the depth in the 3D world coordinate system. The main feature is that a simple algorithm is provided, which enables us to achieve the depthward movement within the camera plane, without being aware of the 3D world coordinate system. Two algorithms are proposed (P-OMDD and O-OMDD), which are based on the pin-hole camera model. As an advantage, camera calibration is not required before applying the algorithm in these methods. Since a single image is used for the object representation, each of the proposed methods has its limitations in terms of fidelity of the composite image. P-OMDD faithfully reproduces the angle at which the object is seen, but the pixels of the hidden surface are missing. On the contrary, O-OMDD can avoid the hidden surface problem, but the angle of the object is fixed, wherever it moves. It is verified through several experiments that, when using O-OMDD, subjectively natural composite images can be obtained under any object movement, in terms of size and position in the camera plane. Future tasks include improving the change in illumination due to positional changes and the partial loss of objects due to noise in depth images.

  • Posture Recognition Technology Based on Kinect

    Yan LI  Zhijie CHU  Yizhong XIN  

     
    PAPER-Human-computer Interaction

      Pubricized:
    2019/12/12
      Vol:
    E103-D No:3
      Page(s):
    621-630

    Aiming at the complexity of posture recognition with Kinect, a method of posture recognition using distance characteristics is proposed. Firstly, depth image data was collected by Kinect, and three-dimensional coordinate information of 20 skeleton joints was obtained. Secondly, according to the contribution of joints to posture expression, 60 dimensional Kinect skeleton joint data was transformed into a vector of 24-dimensional distance characteristics which were normalized according to the human body structure. Thirdly, a static posture recognition method of the shortest distance and a dynamic posture recognition method of the minimum accumulative distance with dynamic time warping (DTW) were proposed. The experimental results showed that the recognition rates of static postures, non-cross-subject dynamic postures and cross-subject dynamic postures were 95.9%, 93.6% and 89.8% respectively. Finally, posture selection, Kinect placement, and comparisons with literatures were discussed, which provides a reference for Kinect based posture recognition technology and interaction design.

  • A Robust Depth Image Based Rendering Scheme for Stereoscopic View Synthesis with Adaptive Domain Transform Based Filtering Framework

    Wei LIU  Yun Qi TANG  Jian Wei DING  Ming Yue CUI  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2018/08/31
      Vol:
    E101-D No:12
      Page(s):
    3138-3149

    Depth image based rendering (DIBR), which is utilized to render virtual views with a color image and the corresponding depth map, is one of the key procedures in the 2D to 3D conversion process. However, some troubling problems, such as depth edge misalignment, disocclusion occurrences and cracks at resampling, still exist in current DIBR systems. To solve these problems, in this paper, we present a robust depth image based rendering scheme for stereoscopic view synthesis. The cores of the proposed scheme are two depth map filters which share a common domain transform based filtering framework. As a first step, a filter of this framework is carried out to realize texture-depth boundary alignments and directional disocclusion reduction smoothing simultaneously. Then after depth map 3D warping, another adaptive filter is used on the warped depth maps with delivered scene gradient structures to further diminish the remaining cracks and noises. Finally, with the optimized depth map of the virtual view, backward texture warping is adopted to retrieve the final texture virtual view. The proposed scheme enables to yield visually satisfactory results for high quality 2D to 3D conversion. Experimental results demonstrate the excellent performances of the proposed approach.

  • Foreground Segmentation Using Morphological Operator and Histogram Analysis for Indoor Applications

    Kyounghoon JANG  Geun-Jun KIM  Hosang CHO  Bongsoon KANG  

     
    LETTER-Vision

      Vol:
    E98-A No:9
      Page(s):
    1998-2003

    This paper proposes a foreground segmentation method for indoor environments using depth images only. It uses a morphological operator and histogram analysis to segment the foreground. In order to compare the accuracy for foreground segmentation, we use metric measurements of false positive rate (FPR), false negative rate (FNR), total error (TE), and a similarity measure (S). A series of experimental results using video sequences collected under various circumstances are discussed. The proposed system is also designed in a field-programmable gate array (FPGA) implementation with low hardware resources.

  • A Depth-Guided Inpainting Scheme Based on Foreground Depth-Layer Removal for High Quality 2D to 3D Video Conversion

    Jangwon CHOI  Yoonsik CHOE  Yong-Goo KIM  

     
    LETTER-Image Processing and Video Processing

      Vol:
    E96-D No:11
      Page(s):
    2483-2486

    This letter proposes a novel depth-guided inpainting scheme for the high quality hole-filling in 2D-to-3D video conversion. The proposed scheme detects and removes foreground depth layers in an image patch, enabling appropriate patch formation using only disoccluded background information. This background only patch formation helps to avoid the propagation of wrong depths over hole area, and thus improve the overall quality of converted 3D video experience. Experimental results demonstrate the proposed scheme provides visually much more pleasing inpainting results with better preserved object edges compared to the state-of-the-art depth-guided inpainting schemes.

  • Hierarchical Decomposition of Depth Map Sequences for Representation of Three-Dimensional Dynamic Scenes

    Sung-Yeol KIM  Yo-Sung HO  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E90-D No:11
      Page(s):
    1813-1820

    In this paper, we propose a new scheme to represent three-dimensional (3-D) dynamic scenes using a hierarchical decomposition of depth maps. In the hierarchical decomposition, we split a depth map into four types of images: regular mesh, boundary, feature point and number-of-layer (NOL) images. A regular mesh image is obtained by down-sampling a depth map. A boundary image is generated by gathering pixels of the depth map on the region of edges. For generating feature point images, we select pixels of the depth map on the region of no edges according to their influence on the shape of a 3-D surface, and convert the selected pixels into images. A NOL image includes structural information to manage the other three images. In order to render a frame of 3-D dynamic scenes, we first generate an initial surface utilizing the information of regular mesh, boundary and NOL images. Then, we enhance the initial surface by adding the depth information of feature point images. With the proposed scheme, we can represent consecutive 3-D scenes successfully within the framework of a multi-layer structure. Furthermore, we can compress the data of 3-D dynamic scenes represented by a mesh structure by a 2-D video coder.