The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] eavesdropping(9hit)

1-9hit
  • Proactive Eavesdropping for Suspicious Millimeter Wave Wireless Communications with Spoofing Relay

    Cheng CHEN  Haibo DAI  Tianwen GUO  Qiang YU  Baoyun WANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    691-696

    This paper investigates the wireless information surveillance in a suspicious millimeter wave (mmWave) wireless communication system via the spoofing relay based proactive eavesdropping approach. Specifically, the legitimate monitor in the system acts as a relay to simultaneously eavesdrop and send spoofing signals to vary the source transmission rate. To maximize the effective eavesdropping rate, an optimization problem for both hybrid precoding design and power distribution is formulated. Since the problem is fractional and non-convex, we resort to the Dinkelbach method to equivalently reduce the original problem into a series of non-fractional problems, which is still coupling. Afterwards, based on the BCD-type method, the non-fractional problem is reduced to three subproblems with two introduced parameters. Then the GS-PDD-based algorithm is proposed to obtain the optimal solution by alternately optimizing the three subproblems and simultaneously updating the introduced parameters. Numerical results verify the effectiveness and superiority of our proposed scheme.

  • Secure Communications for Primary Users in Cognitive Radio Networks with Collusive Eavesdroppers

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:11
      Page(s):
    1970-1974

    This letter studies physical-layer security in a cognitive radio (CR) network, where a primary user (PU) is eavesdropped by multiple collusive eavesdroppers. Under the PU secrecy outage constraint to protect the PU, the secondary users (SUs) are assumed to be allowed to transmit. The problem of joint SU scheduling and power control to maximize the SU ergodic transmission rate is investigated for both the scenarios of perfect and imperfect channel state information (CSI). It is shown that, although collusive eavesdroppers degrade the PU performance compared to non-collusive eavesdroppers, the SU performance is actually improved when the number of eavesdroppers is large. It is also shown that our proposed scheme with imperfect CSI can guarantee that the PU performance is unaffected by imperfect CSI.

  • Secrecy Throughput Analysis for Time-Switching SWIPT Networks with Full-Duplex Jamming

    Xuanxuan TANG  Wendong YANG  Yueming CAI  Weiwei YANG  Yuyang ZHANG  Xiaoli SUN  Yufeng QIAN  

     
    LETTER-Reliability, Maintainability and Safety Analysis

      Vol:
    E101-A No:7
      Page(s):
    1136-1140

    This paper studies the secrecy throughput performance of the three-node wireless-powered networks and proposes two secure transmission schemes, namely the half-duplex maximal ratio combining (HD&MRC) scheme and the full-duplex jamming scheme based on time switching simultaneous wireless information and power transfer (FDJ&TS-SWIPT). The closed-form expressions of the secrecy throughput are derived, and intuitive comparison of the two schemes is provided. It is illustrated that the HD&MRC scheme only applies to the low and medium signal-to-noise ratio (SNR) regime. On the contrary, the suitable SNR regime of the FDJ&TS-SWIPT is much wider. It is depicted that FDJ&TS-SWIPT combing with current passive self-interference cancellation (SIC) algorithm outperforms HD&MRC significantly, especially when a medium or high transmit SNR is provided. Numerical simulations are conducted for verifying the validity of the analysis.

  • Proactive Eavesdropping through a Third-Party Jammer

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:5
      Page(s):
    878-882

    This letter considers a legitimate proactive eavesdropping scenario, where a half-duplex legitimate monitor hires a third-party jammer for jamming the suspicious communication to improve the eavesdropping performance. The interaction between the third-party jammer and the monitor is modeled as a Stackelberg game, where the jammer moves first and sets the price for jamming the suspicious communication, and then the legitimate monitor moves subsequently and determines the requested transmit power of the jamming signals. We derive the optimal jamming price and the optimal jamming transmit power. It is shown that the proposed price-based proactive eavesdropping scheme is effective in improving the successful eavesdropping probability compared to the case without jamming. It is also shown that the proposed scheme outperforms the existing full-duplex scheme when the residual self-interference cannot be neglected.

  • Legitimate Surveillance with a Wireless Powered Monitor in Rayleigh Fading Channels

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E101-A No:1
      Page(s):
    293-297

    This letter investigates the performance of a legitimate surveillance system, where a wireless powered legitimate monitor aims to eavesdrop a suspicious communication link. Power splitting technique is adopted at the monitor for simultaneous information eavesdropping and energy harvesting. In order to maximize the successful eavesdropping probability, the power splitting ratio is optimized under the minimum harvested energy constraint. Assuming that perfect channel state information (CSI) or only the channel distribution information (CDI) is available, the closed-form maximum successful eavesdropping probability is obtained in Rayleigh fading channels. It is shown that the minimum harvested energy constraint has no impact on the eavesdropping performance if the minimum harvested energy constraint is loose. It is also shown that the eavesdropping performance loss due to partial knowledge of CSI is negligible when the eavesdropping link channel condition is much better than that of the suspicious communication link channel.

  • Joint User and Power Allocation in Underlay Cognitive Radio Networks with Multiple Primary Users' Security Constraints

    Ding XU  Qun LI  

     
    LETTER-Communication Theory and Signals

      Vol:
    E100-A No:9
      Page(s):
    2061-2064

    In this letter, we consider a cognitive radio network where multiple secondary users (SUs) share the spectrum bands with multiple primary users (PUs) who are facing security threats from multiple eavesdroppers. By adopting the PU secrecy outage constraint to protect the PUs, we optimize the joint user and power allocation for the SUs to maximize the SU ergodic transmission rate. Simulation results are presented to verify the effectiveness of the proposed algorithm. It is shown that the proposed algorithm outperforms the existing scheme, especially for a large number of PUs and a small number of SUs. It is also shown that the number of eavesdroppers has negligible impact on the performance improvement of the proposed algorithm compared to the existing scheme. In addition, it is shown that increasing the number of eavesdroppers has insignificant impact on the SU performance if the number of eavesdroppers is already large.

  • Emission Security Limits for Compromising Emanations Using Electromagnetic Emanation Security Channel Analysis

    Hee-Kyung LEE  Yong-Hwa KIM  Young-Hoon KIM  Seong-Cheol KIM  

     
    PAPER-Electromagnetic Compatibility(EMC)

      Vol:
    E96-B No:10
      Page(s):
    2639-2649

    In this paper, we propose periodic and aperiodic security limits for compromising emanations in the VHF and UHF bands. First, we perform the electromagnetic emanation security (EMSEC)-channel measurements in the 200-1000MHz frequency bands. Second, we analyse the pathloss characteristics of the indoor EMSEC-channel based on these measurements. Through this EMSEC-channel analysis, we affirm that the total radio attenuation, which is one of the key parameters for determining the security limits for compromising emanations, follows the Rician distribution. With these results, we propose that periodic and aperiodic emission security limits can be classified into two levels depending on the total radio attenuation and the extent of required confidentiality. The proposed security limits are compared with other security limits and existing civil and military EMC standards.

  • Evaluation of Information Leakage via Electromagnetic Emanation and Effectiveness of Tempest

    Hidema TANAKA  

     
    PAPER-Information Leakage

      Vol:
    E91-D No:5
      Page(s):
    1439-1446

    It is well known that there is relationship between electromagnetic emanation and processing information in IT devices such as personal computers and smart cards. By analyzing such electromagnetic emanation, eavesdropper will be able to get some information, so it becomes a real threat of information security. In this paper, we show how to estimate amount of information that is leaked as electromagnetic emanation. We assume the space between the IT device and the receiver is a communication channel, and we define the amount of information leakage via electromagnetic emanations by its channel capacity. By some experimental results of Tempest, we show example estimations of amount of information leakage. Using the value of channel capacity, we can calculate the amount of information per pixel in the reconstructed image. And we evaluate the effectiveness of Tempest fonts generated by Gaussian method and its threshold of security.

  • Application of Quantum Cryptography to an Eavesdropping Detectable Data Transmission

    Takamitsu KUDO  Tsuyoshi Sasaki USUDA  Ichi TAKUMI  Masayasu HATA  

     
    PAPER-Quantum Information

      Vol:
    E82-A No:10
      Page(s):
    2178-2184

    In this paper, we show that the principle of quantum cryptography can be applied not only to a key distribution scheme but also to a data transmission scheme. We propose a secure data transmission scheme in which an eavesdropping can be detected based on sharing the bases Alice (the sender) and Bob (the receiver) have. We also show properties of this scheme.