The search functionality is under construction.

Keyword Search Result

[Keyword] estimation errors(7hit)

1-7hit
  • Effects of Electromagnet Interference on Speed and Position Estimations of Sensorless SPMSM Open Access

    Yuanhe XUE  Wei YAN  Xuan LIU  Mengxia ZHOU  Yang ZHAO  Hao MA  

     
    PAPER-Electromechanical Devices and Components

      Pubricized:
    2023/11/10
      Vol:
    E107-C No:5
      Page(s):
    124-131

    Model-based sensorless control of permanent magnet synchronous motor (PMSM) is promising for high-speed operation to estimate motor state, which is the speed and the position of the rotor, via electric signals of the stator, beside the inevitable fact that estimation accuracy is degraded by electromagnet interference (EMI) from switching devices of the converter. In this paper, the simulation system based on Luenberger observer and phase-locked loop (PLL) has been established, analyzing impacts of EMI on motor state estimations theoretically, exploring influences of EMI with different cutoff frequency, rated speeds, frequencies and amplitudes. The results show that Luenberger observer and PLL have strong immunity, which enable PMSM can still operate stably even under certain degrees of interference. EMI produces sideband harmonics that enlarge pulsation errors of speed and position estimations. Additionally, estimation errors are positively correlated with cutoff frequency of low-pass filter and the amplitude of EMI, and negatively correlated with rated speed of the motor and the frequency of EMI.  When the frequency is too high, its effects on motor state estimations are negligible. This work contributes to the comprehensive understanding of how EMI affects motor state estimations, which further enhances practical application of sensorless PMSM.

  • Link Adaptation of Two-Way AF Relaying Network with Channel Estimation Error over Nakagami-m Fading Channel

    Kyu-Sung HWANG  Chang Kyung SUNG  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2018/09/14
      Vol:
    E102-B No:3
      Page(s):
    581-591

    In this paper, we analyze the impact of channel estimation errors in an amplify-and-forward (AF)-based two-way relaying network (TWRN) where adaptive modulation (AM) is employed in individual relaying path. In particular, the performance degradation caused by channel estimation error is investigated over Nakagami-m fading channels. We first derive an end-to-end signal-to-noise ratio (SNR), a cumulative distribution function, and a probability density function in the presence of channel estimation error for the AF-based TWRN with adaptive modulation (TWRN-AM). By utilizing the derived SNR statistics, we present accurate expressions of the average spectral efficiency and bit error rates with an outage-constraint in which transmission does not take place during outage events of bidirectional communications. Based on our derived analytical results, an optimal power allocation scheme for TWRN-AM is proposed to improve the average spectral efficiency by minimizing system outages.

  • Performance Analysis of Two-Way Relaying Network with Adaptive Modulation in the Presence of Imperfect Channel Information

    Kyu-Sung HWANG  MinChul JU  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E99-B No:5
      Page(s):
    1170-1179

    In this paper, we study the impact of imperfect channel information on an amplify-and-forward (AF)-based two-way relaying network (TWRN) with adaptive modulation which consists of two end-terminals and multiple relays. Specifically, we consider a single-relay selection scheme of the TWRN in the presence of outdated channel state information (CSI) and channel estimation errors. First, we choose the best relay based on outdated CSI, and perform adaptive modulation on both relaying paths with channel estimation errors. Then, we discuss the impact of the outdated CSI on the statistics of the signal-to-noise ratio (SNR) per hop. In addition, we formulate the end-to-end SNRs with channel estimation errors and offer statistic analyses in the presence of both the outdated CSI and channel estimation errors. Finally, we provide the performance analyses of the proposed TWRN with adaptive modulation in terms of average spectral efficiency, average bit error rate, and outage probability. Numerical examples are given to verify our obtained analytical results for various system conditions.

  • Collaborative Filtering for Position Estimation Error Correction in WLAN Positioning Systems

    Shigeaki TAGASHIRA  Yuhei KANEKIYO  Yutaka ARAKAWA  Teruaki KITASUKA  Akira FUKUDA  

     
    PAPER

      Vol:
    E94-B No:3
      Page(s):
    649-657

    A critical problem with wireless LAN-based positioning systems is the degradation in position estimation accuracy due to complex variation in the strength of the received signal, which originates in the nature of the underlying wireless channel. Handling such variation effectively is essential for the creation of practical wireless LAN-based positioning systems. In this paper, we propose a collaborative mechanism for correcting position estimation errors. The main objective is to assist users in correcting estimation errors manually by providing access to a shared body of accumulated information on corrections made by many other users. In particular, the mechanism is designed to enable any group of users to collaboratively build upon this body of information. Finally, we evaluate the effectiveness of the proposed mechanism through experiments. The results confirm that the proposed mechanism can provide effective estimation error correction in a realistic environment.

  • Impact of Channel Estimation Errors in Cooperative Transmission over Nakagami-m Fading Channels

    Lei WANG  Yueming CAI  Weiwei YANG  

     
    PAPER-Information Network

      Vol:
    E94-D No:2
      Page(s):
    298-307

    In this paper, we analyze the impact of channel estimation errors for both decode-and-forward (DF) and amplify-and-forward (AF) cooperative communication systems over Nakagami-m fading channels. Firstly, we derive the exact one-integral and the approximate expressions of the symbol error rate (SER) for DF and AF relay systems with different modulations. We also present expressions showing the limitations of SER under channel estimation errors. Secondly, in order to quantify the impact of channel estimation errors, the average signal-to-noise-ratio (SNR) gap ratio is investigated for the two types of cooperative communication systems. Numerical results confirm that our theoretical analysis for SER is very efficient and accurate. Comparison of the average SNR gap ratio shows that DF model is less susceptible to channel estimation errors than AF model.

  • Full-Rate STBCs from Coordinate Interleaved Orthogonal Designs in Time-Selective Fading Channels

    Hoojin LEE  Jeffrey G. ANDREWS  Edward J. POWERS  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E91-B No:4
      Page(s):
    1185-1189

    Space-time block codes (STBCs) from coordinate interleaved orthogonal designs (CIODs) have attracted a great deal of attention due to their full-diversity and linear maximum likelihood (ML) decodability. In this letter, we propose a simple detection technique, particularly for full-rate STBCs from CIODs to overcome the performance degradation caused by time-selective fading channels. Furthermore, we evaluate the effects of time-selective fading channels and imperfect channel estimation on STBCs from CIODs by using a newly-introduced index, the results of which demonstrate that full-rate STBCs from CIODs are more robust against time-selective fading channels than conventional full-rate STBCs.

  • The Asymptotic Performance of the Linear MMSE Receiver for Spatial Multiplexing System with Channel Estimation Errors

    Qiang LI  Jiansong GAN  Yunzhou LI  Shidong ZHOU  Yan YAO  

     
    LETTER-Wireless Communication Technologies

      Vol:
    E90-B No:4
      Page(s):
    994-997

    Spatial multiplexing (SM) offers a linear increase in transmission rate without bandwidth expansion or power increase. In SM systems, the LMMSE receiver establishes a good tradeoff between the complexity and performance. The performance of the LMMSE receiver would be degraded by MIMO channel estimation errors. This letter focus on obtaining the asymptotic convergence of output interference power and SIR performance for the LMMSE receiver with channel uncertainty. Exactly matched simulation results verify the validity of analysis in the large-system assumption. Furthermore, we find that the analytical results are also valid in the sense of average results for limited-scale system in spite of the asymptotic assumption used in derivation.