1-1hit |
Yong WANG Zhiqiu HUANG Yong LI RongCun WANG Qiao YU
A spectrum-based fault localization technique (SBFL), which identifies fault location(s) in a buggy program by comparing the execution statistics of the program spectra of passed executions and failed executions, is a popular automatic debugging technique. However, the usefulness of SBFL is mainly affected by the following two factors: accuracy and fault understanding in reality. To solve this issue, we propose a SBFL framework to support fault understanding. In the framework, we firstly localize a suspicious fault module to start debugging and then generate a weighted fault propagation graph (WFPG) for the hypothesis fault module, which weights the suspiciousness for the nodes to further perform block-level fault localization. In order to evaluate the proposed framework, we conduct a controlled experiment to compare two different module-level SBFL approaches and validate the effectiveness of WFPG. According to our preliminary experiments, the results are promising.