The search functionality is under construction.

Keyword Search Result

[Keyword] feedback amplifier(5hit)

1-5hit
  • An Additional Theorem on BIBO Stability of a General Feedback Amplifier Circuit Formulated by BIBO Operators

    Takahiro INOUE  

     
    LETTER-Circuit Theory

      Vol:
    E97-A No:9
      Page(s):
    1979-1981

    A new theorem is proposed on BIBO (Bounded Input Bounded Output) stability of a general feedback amplifier circuit formulated by BIBO operators. The proposed theorem holds for both linear and nonlinear BIBO operators. The meaning of this theorem is clarified by applying it to continuous-time linear cases.

  • A New Theoretical Formulation of a General Feedback Amplifier Circuit and Its Fundamental Theorems

    Takahiro INOUE  

     
    LETTER-Circuit Theory

      Vol:
    E96-A No:11
      Page(s):
    2279-2281

    A new theoretical formulation based on BIBO (Bounded Input Bounded Output) operators is proposed for a general feedback amplifier circuit. Several fundamental theorems are derived in this letter. The main theorem provides a basis for a realization of an inverse of a feedback-branch linear or nonlinear BIBO operator satisfying the associative law.

  • IM3 Cancellation Method Using Current Feedback Suitable for a Multi-Stage RFIC Amplifier

    Toshifumi NAKATANI  Koichi OGAWA  

     
    PAPER

      Vol:
    E90-C No:6
      Page(s):
    1209-1221

    A new method of cancellation of IM3 using current feedback has been proposed for a multi-stage RFIC amplifier. In order to cancel the IM3 present in an output signal of the amplifier, the IIP3 level and IM3 phase of the amplifier are adjusted by means of feedback circuit techniques, so that the target specification is satisfied. By estimating the IIP3 level and IM3 phase variations for two states in situations with and without feedback possessing linear factors, the parameters of a feedback circuit can be calculated. To confirm the validity of the method, we have investigated two approaches; one including an analytical approach to designing a two-stage feedback amplifier, achieving an IIP3 level improvement of 14.8 dB. The other method involves the fabrication of single-stage amplifiers with and without feedback, operating at 850 MHz, both of which were designed as an integrated circuit using a 0.18 µm SiGe BiCMOS process. The fabricated IC's were tested using a load-pull measurement system, and a good agreement between the estimated and measured IIP3 level and IM3 phase variations has been achieved. Further studies show that the error in these variations, as estimated by the method, has been found to be less than 1.5 dB and 15 degrees, respectively, when the load admittance at 1701 MHz was greater than 1/50 S.

  • High Speed Transconductance-C-Opamp Integrator Using Current-Feedback Amplifier

    Takahide SATO  Shigetaka TAKAGI  Nobuo FUJII  

     
    PAPER-Building Block

      Vol:
    E88-C No:6
      Page(s):
    1166-1171

    A high-speed transconductance-C-opamp integrator using a current-feedback amplifier is proposed. The integrator has good frequency response compared with a conventional transconductance-C-opamp integrator using a voltage-feedback amplifier. The current-feedback amplifier shifts the second pole of the proposed integrator to the upper frequency. The frequency is proportional to the current gain of the current-feedback amplifier. The proposed integrator can eliminate effects of the parasitics at the output node of the transconductance since the voltage at the node is fixed. One of the circuit examples of the proposed integrator is shown. Its validity is confirmed through HSPICE simulations. The proposed integrator works as predicted up to 260 MHz.

  • Voltage-Mode Universal Biquadratic Filter Using Single Current-Feedback Amplifier

    Jiun-Wei HORNG  Chao-Kuei CHANG  Jie-Mei CHU  

     
    LETTER-Circuit Theory

      Vol:
    E85-A No:8
      Page(s):
    1970-1973

    A voltage-mode universal biquadratic filter using single current-feedback amplifier (CFA), two capacitors and three resistors is presented. The new circuit has four inputs and one output and can realize all the standard filter functions, that is, lowpass, bandpass, highpass, notch and allpass filters, without changing the circuit topology. The use of only one current-feedback amplifier simplifiers the configuration.