The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fronthaul(7hit)

1-7hit
  • A Survey on Research Activities for Deploying Cell Free Massive MIMO towards Beyond 5G Open Access

    Issei KANNO  Kosuke YAMAZAKI  Yoji KISHI  Satoshi KONISHI  

     
    INVITED PAPER

      Pubricized:
    2022/04/28
      Vol:
    E105-B No:10
      Page(s):
    1107-1116

    5G service has been launched in various countries, and research for the beyond 5G is already underway actively around the world. In beyond 5G, it is expected to expand the various capabilities of communication technologies to cover further wide use cases from 5G. As a candidate elemental technology, cell free massive MIMO has been widely researched and shown its potential to enhance the capabilities from various aspects. However, for deploying this technology in reality, there are still many technical issues such as a cost of distributing antenna and installing fronthaul, and also the scalability aspects. This paper surveys research trends of cell free massive MIMO, especially focusing on the deployment challenges with an introduction to our specific related research activities including some numerical examples.

  • Achieving Ultra-Low Latency for Network Coding-Aware Multicast Fronthaul Transmission in Cache-Enabled C-RANs

    Qinglong LIU  Chongfu ZHANG  

     
    LETTER-Coding Theory

      Pubricized:
    2021/06/15
      Vol:
    E104-A No:12
      Page(s):
    1723-1727

    In cloud radio access networks (C-RANs) architecture, the Hybrid Automatic Repeat Request (HARQ) protocol imposes a strict limit on the latency between the baseband unit (BBU) pool and the remote radio head (RRH), which is a key challenge in the adoption of C-RANs. In this letter, we propose a joint edge caching and network coding strategy (ENC) in the C-RANs with multicast fronthaul to improve the performance of HARQ and thus achieve ultra-low latency in 5G cellular systems. We formulate the edge caching design as an optimization problem for maximizing caching utility so as to obtain the optimal caching time. Then, for real-time data flows with different latency constraints, we propose a scheduling policy based on network coding group (NCG) to maximize coding opportunities and thus improve the overall latency performance of multicast fronthaul transmission. We evaluate the performance of ENC by conducting simulation experiments based on NS-3. Numerical results show that ENC can efficiently reduce the delivery delay.

  • IF-over-Fiber Technology Aiming at Efficient Bandwidth Utilization and Perfect Centralized Control for Next-Generation Mobile Fronthaul Links in C-RAN Architectures Open Access

    Shota ISHIMURA  Byung-Gon KIM  Kazuki TANAKA  Shinobu NANBA  Kosuke NISHIMURA  Hoon KIM  Yun C. CHUNG  Masatoshi SUZUKI  

     
    INVITED PAPER

      Pubricized:
    2017/10/18
      Vol:
    E101-B No:4
      Page(s):
    952-960

    The intermediate frequency-over-fiber (IFoF) technology has attracted attention as an alternative transmission scheme to the functional split for the next-generation mobile fronthaul links due to its high spectral efficiency and perfect centralized control ability. In this paper, we discuss and clarify network architectures suited for IFoF, based on its advantages over the functional split. One of the major problems for IFoF transmission is dispersion-induced RF power fading, which limits capacity and transmission distance. We introduce our previous work, in which high-capacity and long-distance IFoF transmission was demonstrated by utilizing a parallel intensity/phase modulators (IM/PM) transmitter which can effectively avoid the fading. The IFoF technology with the proposed scheme is well suited for the long-distance mobile fronthaul links for the 5th generation (5G) mobile system and beyond.

  • Technical Features and Approaches on Optical Access Networks for Various Applications Open Access

    Toshinori TSUBOI  Tomohiro TANIGUCHI  Tetsuya YOKOTANI  

     
    INVITED PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1606-1613

    This paper describes optical access networks focusing on passive optical network (PON) technologies from a technical point of view. Optical access networks have been applied to fiber-to-the-home as a driving force of broadband services and their use will continue growing in the near future. They will be applied as an aggregate component of broadband wireless networks. This paper also addresses solutions for their application.

  • A Novel Two-Stage Compression Scheme Combining Polar Coding and Linear Prediction Coding for Fronthaul Links in Cloud-RAN

    Fangliao YANG  Kai NIU  Chao DONG  Baoyu TIAN  Zhihui LIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2016/11/29
      Vol:
    E100-B No:5
      Page(s):
    691-701

    The transmission on fronthaul links in the cloud radio access network has become a bottleneck with the increasing data rate. In this paper, we propose a novel two-stage compression scheme for fronthaul links. In the first stage, the commonly used techniques like cyclic prefix stripping and sampling rate adaptation are implemented. In the second stage, a structure called linear prediction coding with decision threshold (LPC-DT) is proposed to remove the redundancies of signal. Considering that the linear prediction outputs have large dynamic range, a two-piecewise quantization with optimized decision threshold is applied to enhance the quantization performance. In order to further lower the transmission rate, a multi-level successive structure of lossless polar source coding is proposed to compress the quantization output with low encoding and decoding complexity. Simulation results demonstrate that the proposed scheme with LPC-DT and LPSC offers not only significantly better compression ratios but also more flexibility in bandwidth settings compared with traditional ones.

  • New Burst-Mode Erbium-Doped Fiber Amplifier with Wide Linearity and High Output Power for Uplink Analog Radio-over-Fiber Signal Transmission

    Masaki SHIRAIWA  Yoshinari AWAJI  Naoya WADA  Atsushi KANNO  Toshiaki KURI  Pham TIEN DAT  Tetsuya KAWANISHI  

     
    PAPER-RoF and Applications

      Vol:
    E98-C No:8
      Page(s):
    832-839

    We report the adaptability of the burst-mode erbium-doped fiber amplifier (BM-EDFA) for uplink transmission of sharply rising analog radio-over-fiber (RoF) signals by using long-term evolution (LTE) -Advanced format on a mobile front-haul. Recent drastically increased mobile data traffic is boosting the demand for high-speed radio communication technologies for next-generation mobile services to enhance user experience. However, the latency become increasingly visible as serious issues. Analog RoF technology is a promising candidate for a next generation mobile front-haul to realize low latency. For the uplink, an RoF signal may rise sharply in response to a burst of in-coming radio signals. We propose that a newly developed BM-EDFA is applied for such a sharply rising RoF signal transmission. The BM-EDFA that we designed using enhanced intrinsic saturation power EDF to suppress the gain transient caused by received optical power fluctuations with optical feedback. The new BM-EDFA was designed for a wider linear output power range and lower NF than the previous BM-EDFA. The observed range of received optical power satisfying an error vector magnitude of less than 8%rms achieved over 16dB. We consider that our BM-EDFAs with wide linear ranges of output power will be a key device for the LTE-Advanced RoF uplink signal transmission via optical access networks for the next-generation mobile front-haul.

  • E- and W-Band High-Capacity Hybrid Fiber-Wireless Links

    J. J. VEGAS OLMOS  X. PANG  I. TAFUR MONROY  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1290-1294

    In this paper we summarize the work conducted in our group in the area of E- and W-band optical high-capacity fiber-wireless links. We present performance evaluations of E- and W-band mm-wave signal generation using photonic frequency upconversion employing both VCSELs and ECLs, along with transmission over different type of optical fibers and for a number of values for the wireless link distance. Hybrid wireless-optical links can be composed of mature and resilient technology available off-the-shelf, and provide functionalities that can add value to optical access networks, specifically in mobile backhaul/fronthaul applications, dense distributed antenna systems and fiber-over-radio scenarios.