The search functionality is under construction.
The search functionality is under construction.

Author Search Result

[Author] Naoya WADA(13hit)

1-13hit
  • New Burst-Mode Erbium-Doped Fiber Amplifier with Wide Linearity and High Output Power for Uplink Analog Radio-over-Fiber Signal Transmission

    Masaki SHIRAIWA  Yoshinari AWAJI  Naoya WADA  Atsushi KANNO  Toshiaki KURI  Pham TIEN DAT  Tetsuya KAWANISHI  

     
    PAPER-RoF and Applications

      Vol:
    E98-C No:8
      Page(s):
    832-839

    We report the adaptability of the burst-mode erbium-doped fiber amplifier (BM-EDFA) for uplink transmission of sharply rising analog radio-over-fiber (RoF) signals by using long-term evolution (LTE) -Advanced format on a mobile front-haul. Recent drastically increased mobile data traffic is boosting the demand for high-speed radio communication technologies for next-generation mobile services to enhance user experience. However, the latency become increasingly visible as serious issues. Analog RoF technology is a promising candidate for a next generation mobile front-haul to realize low latency. For the uplink, an RoF signal may rise sharply in response to a burst of in-coming radio signals. We propose that a newly developed BM-EDFA is applied for such a sharply rising RoF signal transmission. The BM-EDFA that we designed using enhanced intrinsic saturation power EDF to suppress the gain transient caused by received optical power fluctuations with optical feedback. The new BM-EDFA was designed for a wider linear output power range and lower NF than the previous BM-EDFA. The observed range of received optical power satisfying an error vector magnitude of less than 8%rms achieved over 16dB. We consider that our BM-EDFAs with wide linear ranges of output power will be a key device for the LTE-Advanced RoF uplink signal transmission via optical access networks for the next-generation mobile front-haul.

  • Optical Networking Paradigm: Past, Recent Trends and Future Directions Open Access

    Eiji OKI  Naoya WADA  Satoru OKAMOTO  Naoaki YAMANAKA  Ken-ichi SATO  

     
    INVITED SURVEY PAPER-Fiber-Optic Transmission for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1564-1580

    This paper presents past and recent trends of optical networks and addresses the future directions. First, we describe path networks with the historical backgrounds and trends. path networks have advanced by using various multiplexing technologies. They include time-division multiplexing (TDM), asynchronous transfer mode (ATM), and wavelength-division multiplexing (WDM). ATM was later succeeded to multi-protocol label switching (MPLS). Second, we present generalized MPLS technologies (GMPLS). In GMPLS, the label concept of MPLS is extended to other labels used in TDM, WDM, and fiber networks. GMPLS enables network operators to serve networks deployed by different technologies with a common protocol suite of GMPLS. Third, we describe multi-layer traffic engineering and a path computation element (PCE). Multi-layer traffic engineering designs and controls networks considering resource usages of more than one layer. This leads to use network resources more efficiently than the single-layer traffic engineering adopted independently for each layer. PCE is defined as a network element that computes paths, which are used for traffic engineering. Then, we address software-defined networks, which put the designed network functions into the programmable data plane by way of the management plane. We describe the evaluation from GMPLS to software defined networking (SDN) and transport SDN. Fifth, we describe the advanced devices and switches for optical networks. Finally, we address advances in networking technologies and future directions on optical networking.

  • Discrimination of All Types of 4-Bit Optical Code by Optical Time-Gating and Designed Label Recognition Filter in Label Recognition Using Optical Correlation

    Hideaki FURUKAWA  Tsuyoshi KONISHI  Kazuyoshi ITOH  Naoya WADA  Tetsuya MIYAZAKI  

     
    PAPER

      Vol:
    E88-B No:10
      Page(s):
    3841-3847

    In label recognition based on optical correlation processing, to completely discriminate a 4-bit target optical code from all types of 4-bit nontarget ones, we propose a novel label recognition method using both optical time-gating and the designed label recognition filter. We experimentally demonstrate that the intensities of correlation signals of 4-bit similar optical codes can be suppressed by the designed label recognition filter and that only the correlation signal of a 4-bit target optical code can be detected by extraction with optical time-gating. The optical time-gating is realized by using organic nonlinear optical crystal: 2-adamantylamino-5-nitropyridine (AANP).

  • Emergency Optical Network Construction and Control with Multi-Vendor Interconnection for Quick Disaster Recovery

    Sugang XU  Noboru YOSHIKANE  Masaki SHIRAIWA  Takehiro TSURITANI  Hiroaki HARAI  Yoshinari AWAJI  Naoya WADA  

     
    PAPER-Fiber-Optic Transmission for Communications

      Vol:
    E99-B No:2
      Page(s):
    370-384

    Past disasters, e.g., mega-quakes, tsunamis, have taught us that it is difficult to fully repair heavily damaged network systems in a short time. The only method for quickly restoring core communications is to start by fully utilizing the surviving network resources from different networks. However, as these networks might be built using different vendors' products (which are often incompatible with each other), the interconnection and utilization of these surviving resources are not straightforward. In this paper, we consider an all-optical multi-vendor interconnection method as an efficient reactive approach during disaster recovery. First, we introduce a disaster recovery scenario in which we use the multi-vendor interconnection approach. Second, we present two sub-problems and propose solutions: (1) network planning problem for multi-vendor interconnection-based emergency optical network construction and (2) interconnection problem for multi-vendor optical networks including both the data-plane and the control-and-management-plane. To enable the operation of multi-vendor systems, command translation middleware is developed for individual vendor-specific network control-and-management systems. Simulations are conducted to evaluate our proposal for sub-problem (1). The results reveal that multi-vendor interconnection can lead to minimum-cost network recovery. Additionally, an emergency optical network prototype is implemented on a two-vendor optical network test-bed to address sub-problem (2). Demonstrations of both the data-plane and the control-and-management-plane validate the feasibility of the multi-vendor interconnection approach in disaster recovery.

  • Multi-Stage Fiber Delay Line Buffer in Photonic Packet Switch for Asynchronously Arriving Variable-Length Packets

    Nobuo OGASHIWA  Hiroaki HARAI  Naoya WADA  Fumito KUBOTA  Yoichi SHINODA  

     
    PAPER-Internet

      Vol:
    E88-B No:1
      Page(s):
    258-265

    We study photonic packet switches to support asynchronously arriving variable-length packets. A scheduler for contention resolution is operated in electrical domain even when data street of the buffer is provided in optical domain. In this scheme, the scheduler may be a bottleneck. To compensate the gap of high-speed optical transmission and slow-speed electronic processing, we propose a multi-stage fiber delay line (FDL) buffer architecture that forms a tree structure in which each node has a block of FDLs and a scheduler. This is especially useful for output-buffer switches in which scheduling complexity is proportional to the number of ports of the packet switch. Through a newly-developed approximate analytical method, we show the optimum unit length of the fiber delay lines to decrease packet loss probability. We also show the sufficient number of FDLs in the two-stage buffer.

  • Optical Code Division Multiplexing (OCDM) and Its Applications to Photonic Networks

    Ken-ichi KITAYAMA  Hideyuki SOTOBAYASHI  Naoya WADA  

     
    INVITED PAPER

      Vol:
    E82-A No:12
      Page(s):
    2616-2626

    Optical code division multiplexing (OCDM) is the other class of multiplexing techniques than time division multiplexing (TDM), wavelength division multiplexing (WDM) and space division multiplexing (SDM). OCDM has been proposed in mid '70s. It has been long since OCDM remains outside the mainstream of research community of optical communications, however, possible scarcity of the wavelength resource in future photonic networks, the simple access protocol as well as versatility of optical codes motivate recent growth of OCDM research activities. In this paper, first, fundamentals of OCDM concept are presented, highlighting optical encoding and optical time gate detection which realize time spreading/despreading. Next, current research activities of OCDM are reviewed by focusing particularly on the optical implementations and the proof-of-concept experiments. It is devoted to three categories; high bit rate point-to-point transmissions, gigabit multiple access, followed by optical path networks using optical code. Finally, future issues are briefly summarized.

  • Field-Trial Experiments of an IoT-Based Fiber Networks Control and Management-Plane Early Disaster Recovery via Narrow-Band and Lossy Links System (FRENLL)

    Sugang XU  Goshi SATO  Masaki SHIRAIWA  Katsuhiro TEMMA  Yasunori OWADA  Noboru YOSHIKANE  Takehiro TSURITANI  Toshiaki KURI  Yoshinari AWAJI  Naruto YONEMOTO  Naoya WADA  

     
    PAPER

      Pubricized:
    2020/05/14
      Vol:
    E103-B No:11
      Page(s):
    1214-1225

    Large-scale disasters can lead to a severe damage or destruction of optical transport networks including the data-plane (D-plane) and control and management-plane (C/M-plane). In addition to D-plane recovery, quick recovery of the C/M-plane network in modern software-defined networking (SDN)-based fiber optical networks is essential not only for emergency control of surviving optical network resources, but also for quick collection of information related to network damage/survivability to enable the optimal recovery plan to be decided as early as possible. With the advent of the Internet of Things (IoT) technologies, low energy consumption, and low-cost IoT devices have been more common. Corresponding long-distance networking technologies such as low-power wide-area (LPWA) and LPWA-based mesh (LPWA-mesh) networks promise wide coverage sensing and environment data collection capabilities. We are motivated to take an infrastructure-less IoT approach to provide long-distance, low-power and inexpensive wireless connectivity and create an emergency C/M-plane network for early disaster recovery. In this paper, we investigate the feasibility of fiber networks C/M-plane recovery using an IoT-based extremely narrow-band, and lossy links system (FRENLL). For the first time, we demonstrate a field-trial experiment of a long-latency/loss tolerable SDN C/M-plane that can take advantage of widely available IoT resources and easy-to-create wireless mesh networks to enable the timely recovery of the C/M-plane after disaster.

  • Experimental Demonstration of an Optical Packet and Circuit Integrated Ring Network Interoperated with WSON

    Takaya MIYAZAWA  Hideaki FURUKAWA  Naoya WADA  Hiroaki HARAI  

     
    PAPER

      Vol:
    E97-B No:7
      Page(s):
    1325-1333

    We experimentally demonstrate an optical packet and circuit integrated (OPCI) ring network interoperated with a wavelength-switched optical network (WSON) in a network domain. OPCI network and WSON have distinct characteristics from each other: the methods to transfer path control messages and the protocols to set up or delete the optical connections in an optical circuit switch. To interoperate the two types of optical networks, we develop a common path control-plane which can establish or release an end-to-end path by only one autonomous distributed signaling process without stitching. In the common path control-plane, we modify the signaling protocol for OCS so that we can allocate a distinct wavelength to each link on an end-to-end path and also allocate a distinct path route to each of downstream and upstream directions in a bi-directional path. We experimentally show that the common path control-plane can dynamically establish end-to-end paths over the heterogeneous network including the two types of optical networks.

  • Numerical Investigation of a Multi-Rate Coherent Burst-Mode PDM-QPSK Optical Receiver for Flexible Optical Networks

    José Manuel Delgado MENDINUETA  Hideaki FURUKAWA  Satoshi SHINADA  Naoya WADA  

     
    PAPER

      Pubricized:
    2017/04/20
      Vol:
    E100-B No:10
      Page(s):
    1758-1764

    We numerically investigate a PDM-QPSK multi-rate coherent burst-mode optical receiver capable of receiving 3 different line-rates, suitable for next generation optical networks such as hybrid optical circuit switching (OCS)/optical packet switching (OPS) networks, access networks and datacenter networks. The line-rate detection algorithm relies on a simple-to-generate optical header, it is based on the fast Fourier transform (FFT) which can be efficiently implemented with the Goertzel algorithm, and it is insensitive to polarization rotations and frequency offset. Numerically, we demonstrate that performance in terms of packet detection rate (PER) can be tailored by controlling the sizes of the packet header and the line-rate estimator.

  • Investigating the Performance of a Transient-Suppressed EDFA in Optical Packet and Burst-Switched Networks

    Ben PUTTNAM  Yoshinari AWAJI  Naoya WADA  

     
    PAPER

      Vol:
    E94-B No:7
      Page(s):
    1853-1859

    We describe a series of system measurements investigating the performance of a burst-mode or transient-suppressed (TS)-EDFA, specifically designed to reduce the impact of gain transients in dynamic optical networks. We assess the performance of this TS-EDFA in a variety of network contexts. We compare the performance of the TS-EDFA with conventional amplifiers (C-EDFAs) and show its compatibility with supplementary gain control techniques. Finally, we measure gain-transient accumulation along long links using a recirculating transmission loop and show that, for packet-transmission, the number of hops is limited by accumulated transients for a C-EDFA, but limited by accumulated noise for the TS-EDFA.

  • Optical Packet Switching Network Based on Ultra-Fast Optical Code Label Processing

    Naoya WADA  Hiroaki HARAI  Fumito KUBOTA  

     
    INVITED PAPER

      Vol:
    E87-C No:7
      Page(s):
    1090-1096

    Ultrahigh-speed all-optical label processing method is proposed and experimentally demonstrated. This processing method dramatically increases the label processing capability. Optical packet switch (OPS) systems and networks based on OPS nodes are applications of optical processing technologies. For the experiment, we constructed the world's first 40 Gbit/s/port OPS prototype with an all-optical label processor, optical switch, optical buffer, and electronic scheduler. Three-hop optical packet routing using OPS nodes was experimentally demonstrated with it, verifying the feasibility of OPS networks.

  • Photonic Network Technologies for New Generation Network Open Access

    Naoya WADA  Hideaki FURUKAWA  

     
    INVITED PAPER

      Vol:
    E94-B No:4
      Page(s):
    868-875

    In this paper, we show the recent progress of photonic network technologies for the new generation network (NWGN). The NWGN is based on new design concepts that look beyond the next generation network (NGN) and the Internet. The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by the use of information and communication technologies. In order to realize the NWGN, many novel technologies in the physical layer are required, in addition to technologies in the network control layer. Examples of cutting-edge physical layer technologies required to realize the NWGN include a terabit/s/port or greater ultra-wideband optical packet switching system, a modulation-format-free optical packet switching (OPS) node, a hybrid optoelectronic packet switching node, a packet-based reconfigurable optical add/drop multiplexer (ROADM) system, an optical packet and circuit integrated node system, and optical buffering technologies.

  • Cepstral Amplitude Range Normalization for Noise Robust Speech Recognition

    Shingo YOSHIZAWA  Noboru HAYASAKA  Naoya WADA  Yoshikazu MIYANAGA  

     
    PAPER-Speech and Hearing

      Vol:
    E87-D No:8
      Page(s):
    2130-2137

    This paper describes a noise robustness technique that normalizes the cepstral amplitude range in order to remove the influence of additive noise. Additive noise causes speech feature mismatches between testing and training environments and it degrades recognition accuracy in noisy environments. We presume an approximate model that expresses the influence by changing the amplitude range and the DC component in the log-spectra. According to this model, we propose a cepstral amplitude range normalization (CARN) that normalizes the cepstral distance between maximum and minimum values. It can estimate noise robust features without prior knowledge or adaptation. We evaluated its performance in an isolated word recognition task by using the Noisex92 database. Compared with the combinations of conventional methods, the CARN could improve recognition accuracy under various SNR conditions.