Full Text Views
73
In this paper, we show the recent progress of photonic network technologies for the new generation network (NWGN). The NWGN is based on new design concepts that look beyond the next generation network (NGN) and the Internet. The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by the use of information and communication technologies. In order to realize the NWGN, many novel technologies in the physical layer are required, in addition to technologies in the network control layer. Examples of cutting-edge physical layer technologies required to realize the NWGN include a terabit/s/port or greater ultra-wideband optical packet switching system, a modulation-format-free optical packet switching (OPS) node, a hybrid optoelectronic packet switching node, a packet-based reconfigurable optical add/drop multiplexer (ROADM) system, an optical packet and circuit integrated node system, and optical buffering technologies.
The copyright of the original papers published on this site belongs to IEICE. Unauthorized use of the original or translated papers is prohibited. See IEICE Provisions on Copyright for details.
Copy
Naoya WADA, Hideaki FURUKAWA, "Photonic Network Technologies for New Generation Network" in IEICE TRANSACTIONS on Communications,
vol. E94-B, no. 4, pp. 868-875, April 2011, doi: 10.1587/transcom.E94.B.868.
Abstract: In this paper, we show the recent progress of photonic network technologies for the new generation network (NWGN). The NWGN is based on new design concepts that look beyond the next generation network (NGN) and the Internet. The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by the use of information and communication technologies. In order to realize the NWGN, many novel technologies in the physical layer are required, in addition to technologies in the network control layer. Examples of cutting-edge physical layer technologies required to realize the NWGN include a terabit/s/port or greater ultra-wideband optical packet switching system, a modulation-format-free optical packet switching (OPS) node, a hybrid optoelectronic packet switching node, a packet-based reconfigurable optical add/drop multiplexer (ROADM) system, an optical packet and circuit integrated node system, and optical buffering technologies.
URL: https://global.ieice.org/en_transactions/communications/10.1587/transcom.E94.B.868/_p
Copy
@ARTICLE{e94-b_4_868,
author={Naoya WADA, Hideaki FURUKAWA, },
journal={IEICE TRANSACTIONS on Communications},
title={Photonic Network Technologies for New Generation Network},
year={2011},
volume={E94-B},
number={4},
pages={868-875},
abstract={In this paper, we show the recent progress of photonic network technologies for the new generation network (NWGN). The NWGN is based on new design concepts that look beyond the next generation network (NGN) and the Internet. The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by the use of information and communication technologies. In order to realize the NWGN, many novel technologies in the physical layer are required, in addition to technologies in the network control layer. Examples of cutting-edge physical layer technologies required to realize the NWGN include a terabit/s/port or greater ultra-wideband optical packet switching system, a modulation-format-free optical packet switching (OPS) node, a hybrid optoelectronic packet switching node, a packet-based reconfigurable optical add/drop multiplexer (ROADM) system, an optical packet and circuit integrated node system, and optical buffering technologies.},
keywords={},
doi={10.1587/transcom.E94.B.868},
ISSN={1745-1345},
month={April},}
Copy
TY - JOUR
TI - Photonic Network Technologies for New Generation Network
T2 - IEICE TRANSACTIONS on Communications
SP - 868
EP - 875
AU - Naoya WADA
AU - Hideaki FURUKAWA
PY - 2011
DO - 10.1587/transcom.E94.B.868
JO - IEICE TRANSACTIONS on Communications
SN - 1745-1345
VL - E94-B
IS - 4
JA - IEICE TRANSACTIONS on Communications
Y1 - April 2011
AB - In this paper, we show the recent progress of photonic network technologies for the new generation network (NWGN). The NWGN is based on new design concepts that look beyond the next generation network (NGN) and the Internet. The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by the use of information and communication technologies. In order to realize the NWGN, many novel technologies in the physical layer are required, in addition to technologies in the network control layer. Examples of cutting-edge physical layer technologies required to realize the NWGN include a terabit/s/port or greater ultra-wideband optical packet switching system, a modulation-format-free optical packet switching (OPS) node, a hybrid optoelectronic packet switching node, a packet-based reconfigurable optical add/drop multiplexer (ROADM) system, an optical packet and circuit integrated node system, and optical buffering technologies.
ER -