1-15hit |
Takahiro KODAMA Gabriella CINCOTTI
Hybrid 200Gchip/s QAM-based opto-electrical labels with high orthogonality are generated using the convolution of optical 16-level and electrical 4-level PSK codes. The combined simultaneous use of optical and electrical encoding increases system flexibility and code orthogonality, as well as code recognition performance. By performing 50 G-class low-speed LN-PM-based electrical processing on the 200 Gchip/s PSK-based optical code labels generated by a multiport optical encoder, the value of PCR indicating the code orthogonality is increased significantly, and the receiver sensitivity is improved by 0.5dB to achieve LER =10-9 in the next-generation optical packet switching networks.
José Manuel Delgado MENDINUETA Hideaki FURUKAWA Satoshi SHINADA Naoya WADA
We numerically investigate a PDM-QPSK multi-rate coherent burst-mode optical receiver capable of receiving 3 different line-rates, suitable for next generation optical networks such as hybrid optical circuit switching (OCS)/optical packet switching (OPS) networks, access networks and datacenter networks. The line-rate detection algorithm relies on a simple-to-generate optical header, it is based on the fast Fourier transform (FFT) which can be efficiently implemented with the Goertzel algorithm, and it is insensitive to polarization rotations and frequency offset. Numerically, we demonstrate that performance in terms of packet detection rate (PER) can be tailored by controlling the sizes of the packet header and the line-rate estimator.
Salah IBRAHIM Hiroshi ISHIKAWA Tatsushi NAKAHARA Yasumasa SUZAKI Ryo TAKAHASHI
An optoelectronic 32-bit serial-to-parallel converter with a novel conversion scheme and shared-trigger configuration has been developed for the label processing of 100-Gbps (25-Gbps $ imes 4 lambda)$ optical packets. No external optical trigger source is required to operate the converter, as the optical packet itself is used to perform self-triggering. Compared to prior optoelectronic label converters, the new device has a much higher gain even while converting labels at higher data rates, and exhibits tolerance to the voltage swing of received packets. The device response is presented together with the experimental demonstration of serial-to-parallel conversion for 4 different labels at 25 Gbps.
Toru SEGAWA Wataru KOBAYASHI Tatsushi NAKAHARA Ryo TAKAHASHI
We describe wavelength-routed switching technology for 25-Gbit/s optical packets using a tunable transmitter that monolithically integrates a parallel-ring-resonator tunable laser and an InGaAlAs electro-absorption modulator (EAM). The transmitter provided accurate wavelength tunability with 100-GHz spacing and small output power variation. A 25-Gbit/s burst-mode optical-packet data was encoded onto the laser output by modulating the integrated EAM with a constant voltage swing of 2 V at 45$^{circ}$C. Clear eye openings were observed at the output of the 100 GHz-spaced arrayed-waveguide grating with error-free operation being achieved for all packets. The tunable transmitter is very promising for realizing a high-speed, large-port-count and energy-efficient wavelength-routing switch that enables the forwarding of 100-Gbit/s optical packets.
This paper presents recent progress made in the development of an optical packet and circuit integrated network. From the viewpoint of end users, this is a single network that provides both high-speed, inexpensive services and deterministic-delay, low-data-loss services according to the users' usage scenario. From the viewpoint of network service providers, this network provides large switching capacity with low energy requirements, high flexibility, and efficient resource utilization with a simple control mechanism. The network we describe here will contribute to diversification of services, enhanced functional flexibility, and efficient energy consumption, which are included in the twelve design goals of Future Networks announced by ITU-T (International Telecommunication Union - Telecommunication Standardization Sector). We examine the waveband-based network architecture of the optical packet and circuit integrated network. Use of multi-wavelength optical packet increases the switch throughput while minimizing energy consumption. A rank accounting method provides a solution to the problem of inter-domain signaling for end-to-end lightpath establishment. Moving boundary control for packet and circuit services makes for efficient resource utilization. We also describe related advanced technologies such as waveband switching, elastic lightpaths, automatic locator numbering assignment, and biologically-inspired control of optical integrated network.
Sooheuk CHE Masaru ZAITSU Akio HIGO Yoshiaki NAKANO
We propose a novel 13 planar optical switch using aspheric lenses and carrier-induced tunable prisms on InP. An input light beam is collimated by the aspheric lenses in a slab waveguide. The tunable prism, whose refractive indices are tuned by the carrier plasma effect, deflect the collimated light beam and guide it to the output ports. The switching operations of the 13 optical switch that consists of five lenses and eight prisms with a footprint of 5003500 µm are performed by three-dimensional beam propagation methods. A static switching operation with a 5-dB insertion loss and a 13-dB extinction ratio is obtained with 70-mA current injection for each prism. This device has a simple structure and low power consumption and may be useful for optical packet switching systems.
Dang-Quang BUI Hiroaki HARAI Won-Joo HWANG
Integration of optical paths and packets in a switch is a key technique to support ultra-high-speed traffic in the future Internet. However, the question of how to efficiently allocate wavelengths for optical paths and optical packets has not been solved yet due to the lack of a systematic model to evaluate the performance of the integrated switch. In this paper, we model the operation of the integrated switch as a system of two queuing models: M/M/x/x for optical paths and M/M/1/LPS for optical packets. From the model, we find an optimal policy to dynamically allocate wavelength resources in an integrated switch. Simulation results demonstrate that our mechanism achieves better performance than other methods.
In this paper, we show the recent progress of photonic network technologies for the new generation network (NWGN). The NWGN is based on new design concepts that look beyond the next generation network (NGN) and the Internet. The NWGN will maintain the sustainability of our prosperous civilization and help resolve various social issues and problems by the use of information and communication technologies. In order to realize the NWGN, many novel technologies in the physical layer are required, in addition to technologies in the network control layer. Examples of cutting-edge physical layer technologies required to realize the NWGN include a terabit/s/port or greater ultra-wideband optical packet switching system, a modulation-format-free optical packet switching (OPS) node, a hybrid optoelectronic packet switching node, a packet-based reconfigurable optical add/drop multiplexer (ROADM) system, an optical packet and circuit integrated node system, and optical buffering technologies.
Wang-Hsai YANG Cheng-Shong WU Hui-Kai SU
In this paper, we proposed a photonic packet switching control method by used optical correlator for optical packet label packet-switched networks for next Generation networks. The main advance is rely on using the Optical Code Division Multiplexing (OCDM) code to labeling optical packets based on source routing. Based on OCDM labeling either header modification or any label swapping techniques can be avoids. With advantage of existing OCDM coding called OCDM-labels schemes to encapsulate the packets, together with optical correlator to decode the label in optical domain, which can achieve optical packet switching without header modification/label swapping techniques. The O/E/O conversion procedure at each switching device can also be eliminated. This method not only simplifies the design of switch devices in the optical domain to simplify the packet forwarding process, but also speeds up packet forwarding and increases throughput significantly.
In this letter, we study the blocking probabilities in an asynchronous optical packet/burst switching system with full wavelength conversion. Most of the existing work use Poisson traffic models that is well-suited for an infinite population of users. In this letter, the optical packet traffic arriving at the switching system is modeled through a superposition of a finite number of identical on-off sources. We propose a block tridiagonal LU factorization algorithm to efficiently solve the two dimensional Markov chain that arises in the modeling of the switching system.
Dimitrios KLONIDIS Christina T. POLITI Reza NEJABATI Mike J. O'MAHONY Dimitra SIMEONIDOU
A novel optical header extraction scheme based on optical differential phase shift keying--DPSK--decoding is examined analytically and experimentally. The header is applied in front of the payload, on the phase of a pulsed optical level introduced for the duration of the header. The proposed scheme offers maximized header extraction efficiency, required by the electronics to identify the header bits and control the switch. At the same time, the payload is transmitted at maximum extinction ratio. Analytical results prove the enhanced performance of the decoding scheme with respect to the extinction ratio and in comparison to other DPSK based schemes. Moreover, the utilised scheme is cost efficient and easily upgradeable to any bit rates and adds minimum complexity at the transmitter and detector parts of the system. Finally, the implementation of the developed technique in a real optical packet switch is demonstrated, where header extraction, reading, processing and switch control using field programmable gate array--FPGA--technology is successfully demonstrated.
Hirokazu TAKENOUCHI Tatsushi NAKAHARA Kiyoto TAKAHATA Ryo TAKAHASHI Hiroyuki SUZUKI
Asynchronous optical packet switching (OPS) is a promising solution to support the continuous growth of transmission capacity demand. It has been, however, quite difficult to implement key functions needed at the node of such networks with all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The system makes it possible to carry out various required functions such as buffering (random access memory), optical packet compression/decompression, and optical label swapping for high-speed asynchronous optical packets.
Naoya WADA Hiroaki HARAI Fumito KUBOTA
Ultrahigh-speed all-optical label processing method is proposed and experimentally demonstrated. This processing method dramatically increases the label processing capability. Optical packet switch (OPS) systems and networks based on OPS nodes are applications of optical processing technologies. For the experiment, we constructed the world's first 40 Gbit/s/port OPS prototype with an all-optical label processor, optical switch, optical buffer, and electronic scheduler. Three-hop optical packet routing using OPS nodes was experimentally demonstrated with it, verifying the feasibility of OPS networks.
Hiroyuki YOKOYAMA Hajime NAKAMURA Shinichi NOMOTO
Packet loss is a serious problem due to the shortage of optical buffers in all-optical packet switched networks. In order to reduce packet losses, a dynamic routing method called 'deflection routing' has been proposed. Deflection routing, however, requires an optical switch to modify routing tables and packet labels for overflowing packets, so this routing method may also lead to other implementation problems in packet routing and forwarding. This paper proposes a simple routing method called 'reflection routing' which utilizes optical transport links as optical buffers to improve the quality of service in optical packet switched networks in terms of packet loss ratio. We numerically demonstrate the effectiveness and applicability of reflection routing.
Christina (Tanya) POLITI Mike O'MAHONY
A novel optical packet switch architecture is proposed that can support simultaneous processing and routing of packets in bands, without disturbing the granularity of the system. The packet router consists of a waveband converter and an AWG, combined in such a way that processing and switching of packets within and between the wavebands is allowed. The waveband converter is based on four-wave mixing in semiconductor optical amplifiers. Experimental results of the waveband conversion technique are presented to prove the feasibility of such a scheme. Simulation results of an 12 packet router are used to explain the operation of such a subsystem for a synchronous optical packet switched network.