The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] fusion splice(5hit)

1-5hit
  • Development and Future of Optical Fiber Related Technologies Open Access

    Shigeru TOMITA  

     
    INVITED PAPER-Optical Fiber for Communications

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1688-1695

    The history of optical fiber and optical transmission technologies has been described in many publications. However, the history of other technologies designed to support the physical layer of optical transmission has not been described in much detail. I would like to highlight those technologies in addition to optical fibers. Therefore, this paper describes the history of the development of optical fiber related technologies such as fusion splicers, optical fiber connectors, ribbon fiber, and passive components based on changes in optical fibers and optical fiber cables. Moreover, I describe technologies designed to support multi-core fibers such as fan-in/fan-out devices.

  • The Optimum Fusion Splicing Conditions for a Large Mode Area Photonic Crystal Fiber

    Byung-Hyuk PARK  Jinchae KIM  Un-Chul PAEK  Byeong Ha LEE  

     
    PAPER-Optical Fibers, Cables and Fiber Devices

      Vol:
    E88-C No:5
      Page(s):
    883-888

    We report the empirically obtained conditions for the fusion splicing with photonic crystal fibers (PCF) having large mode areas. By controlling the arc-power and the arc-time of a conventional electric-arc fusion splicer, the splicing loss between two PCFs could be lowered down to 0.2 dB in average. For the splicing PCF with a conventional single mode fiber (SMF), the loss was increased due to the modal field mismatch, but still below 0.45 dB in average. The tensile strength was weakened by the splicing from 2.83 GPa down to 1.04 GPa for the PCF-PCF case and 0.89 GPa for the PCF-SMF one.

  • High-Speed Protective Packaging of Fusion Splices Using an Internal Heat Source

    Mitsutoshi HOSHINO  Norio MURATA  

     
    PAPER-Communication Cable and Wave Guides

      Vol:
    E80-B No:9
      Page(s):
    1321-1326

    Materials for a new reinforcement method using an internal heating technique have been developed experimentally for fusion splices. The method employs a protective package of a carbon-fiber composite and a hot-melt adhesive in a heat-shrinkable tube. The most appropriate heating current and heating time were determined from a consideration of the decomposition temperature of the adhesive (300) and the complete shrinking temperature (115) and the minimum welding temperature of Nylon 12 (about 180). The protective package can be installed in less than 30 seconds at a power of 10 W. Air bubbles which might cause microbending were completely eliminated by using Nylon 12 as the hot-melt adhesive, irradiated polyethylene as the heat-shrinkable tube and a carbon-fiber-composite electrical heating rod which also acted a tension member. The key for preparing the carbon-fiber composite was to remove its impurities. Under the condition of temperature difference larger than 40 deg. between the shrinking temperature of the heat-shrinkable tube and the melting temperature of the hot-melt adhesive. Nylon 12 and irradiated polyethylene were needed for the complete elimination of residual bubbles. By using Nylon 12 as the hot-melt adhesive, a reliable protective package could be achieved for a fusion spliced optical fiber with a low excess loss of less than 0.06 dB/splice between -60 and +70 and a high tensile strength of 3.9 kg.

  • Improvement of Fatigue Behavior of the Spliced Portion on Hermetically Carbon-Coated Fibers

    Isamu FUJITA  Masahiro HAMADA  Haruhiko AIKAWA  Hiroki ISHIKAWA  Keiji OSAKA  Yasuo ASANO  

     
    PAPER

      Vol:
    E76-B No:4
      Page(s):
    364-369

    Improvement of fatigue behavior of a fusion spliced portion on a carbon-coated fiber is achieved by recoating carbon using a thermal-CVD process with a CO2 laser as a local heat source. The fatigue parameters, so-called n-values, of 121 and 94 are obtained on the non-spliced portion and the spliced portion, respectively. Assuming a life time prediction model, these high values have been proved to have an advantage in a long-term reliability and to be sufficient in a practical submarine cable use.

  • Optical Fiber Cable Technology for Subscriber Loops

    Masaaki KAWASE  Koushi ISHIHARA  

     
    INVITED PAPER

      Vol:
    E75-B No:9
      Page(s):
    825-831

    Optical fiber cable systems are being developed in many countries for subscriber loops as the infrastructure to realize B-ISDN (Broadband Integrated Services Digital Network). The present systems are DLC (Digital Loop Carrier) systems which provide leased lines, POTS (Plain Old Telephone Services), and N-ISDN (Narrowband ISDN) services. Before FTTH (Fiber To The Home) networks can be implemented, their construction cost must be lowered to the level of the current metallic network. The FTTH network must also be easy to operate and maintain. In this paper, we describe optical fiber cables, splicing, and testing technologies used in the NTT cable networks, and introduce the technologies being developed to construct FTTH networks.