The search functionality is under construction.

Keyword Search Result

[Keyword] health monitoring(5hit)

1-5hit
  • Implementation of a WSN-Based Structural Health Monitoring Architecture Using 3D and AR Mode

    Bonhyun KOO  Taeshik SHON  

     
    LETTER

      Vol:
    E93-B No:11
      Page(s):
    2963-2966

    Recently wireless sensor networks (WSN) has risen as one of the advanced candidate technologies in order to provide more efficient structure health monitoring (SHM) solution in construction sites. In this paper, we proposed WSN monitoring framework in building sites based on 3D visualization and Augmented Reality (AR) in mobile devices. The proposed system applies 3D visualization and AR technology to camera-enabled mobile devices in WSN environment in order to gather much more information than before. Based on the proposed system, we made an experiment to validate the effectiveness of 3D and AR mode using collected data in IEEE 802.15.4-based WSN.

  • Energy Efficient Communication Using Relationships between Biological Signals for Ubiquitous Health Monitoring

    Songjun LEE  Doosu NA  Bonmin KOO  

     
    LETTER

      Vol:
    E93-B No:4
      Page(s):
    842-845

    Wireless sensor networks with a star network topology are commonly applied for health monitoring systems. To determine the condition of a patient, sensor nodes are attached to the body to transmit the data to a coordinator. However, this process is inefficient because the coordinator is always communicating with each sensor node resulting in a data processing workload for the coordinator that becomes much greater than that of the sensor nodes. In this paper, a method is proposed to reduce the number of data transmissions from the sensor nodes to the coordinator by establishing a threshold for data from the biological signals to ensure that only relevant information is transmitted. This results in a dramatic reduction in power consumption throughout the entire network.

  • An Ultrasonic and Air Pressure Sensing System for Detection of Behavior before Getting out of Bed Aided by Fuzzy Theory

    Hayato YAMAGUCHI  Hiroshi NAKAJIMA  Kazuhiko TANIGUCHI  Syoji KOBASHI  Yutaka HATA  

     
    PAPER-Computation and Computational Models

      Vol:
    E93-D No:3
      Page(s):
    542-549

    This paper proposes a sensing system for a behavior detection system using an ultrasonic oscillosensor and an air pressure sensor. The ultrasonic oscillosensor sensor has a cylindrical tank filled with water. It detects the vibration of the target object from the signal reflected from the water surface. This sensor can detect a biological vibration by setting to the bottom bed frame. The air pressure sensor consists of a polypropylene sheet and an air pressure sensor, and detects the pressure information by setting under the bed's mattress. An increase (decrease) in the load placed on the bed is detected by the increase (decrease) in the pressure of the air held in the tube attached to the sheet. We propose a behavior detection system using both sensors, complementally. The system recognizes three states (nobody in bed, keeping quiet in bed, moving in bed) using both sensors, and we detect the behavior before getting out of bed by recognized these states. Fuzzy logic plays a primary role in the system. As the fundamental experiment, we applied the system to five healthy volunteers, the system successfully recognized three states, and detected the behavior before getting out of bed. As the clinical experiment, we applied the system to four elderly patients with dementia, the system exactly detected the behavior before getting out of the bed with enough time for medical care support.

  • A New Ultrasonic Oscillosensor and Its Application in Biological Information Measurement System Aided by Fuzzy Theory

    Yuya KAMOZAKI  Toshiyuki SAWAYAMA  Kazuhiko TANIGUCHI  Syoji KOBASHI  Katsuya KONDO  Yutaka HATA  

     
    PAPER-Biological Engineering

      Vol:
    E90-D No:11
      Page(s):
    1864-1872

    In this paper, we describe a new ultrasonic oscillosensor and its application in a biological information measurement system. This ultrasonic sensor has a cylindrical tank of 26 mm (diameter)20 mm (height) filled with water and an ultrasonic probe. It detects the vibration of the target object by obtaining echo signals reflected from the water surface. This sensor can noninvasively detect the vibration of a patient by placing it under a bed frame. We propose a recognition system for humans in bed. Using this sensor, we could determine whether or not a patient is in the bed. Moreover, we propose a heart rate monitoring system using this sensor. When our system was tested on four volunteers, we successfully detected a heart rate comparable to that in the case of using an electrocardiograph. Fuzzy logic plays a primary role in the recognition. Consequently, this system can noninvasively determine whether a patient is in the bed as well as their heart rate using a constraint-free and compact device.

  • Damage Detection for International America's Cup Class Yachts Using a Fiber Optic Distributed Strain Sensor

    Akiyoshi SHIMADA  Hiroshi NARUSE  Kiyoshi UZAWA  Gaku KIMURA  Hideaki MURAYAMA  Kazuro KAGEYAMA  

     
    PAPER-Optoelectronics

      Vol:
    E86-C No:2
      Page(s):
    218-223

    This paper describes a method for assessing the structural integrity of International America's Cup Class (IACC) yachts using a fiber optic distributed strain sensor. IACC yachts are made of advanced composite materials designed for high stiffness and lightness, however, a number of critical accidents have occurred during sailing. So we developed a health monitoring system and applied it to two Japanese IACC yachts to measure the distributed strain by using an optical fiber sensor installed in their hulls. We then estimated the three-dimensional distributed strain and compared the results with simulated data obtained by finite element analysis (FEA) to confirm the designed strength of these yachts.