The search functionality is under construction.

Keyword Search Result

[Keyword] high frame rate(8hit)

1-8hit
  • High Temporal Resolution-Based Temporal Iterative Tracking for High Framerate and Ultra-Low Delay Dynamic Tracking System

    Tingting HU  Ryuji FUCHIKAMI  Takeshi IKENAGA  

     
    PAPER-Image Processing and Video Processing

      Pubricized:
    2022/02/22
      Vol:
    E105-D No:5
      Page(s):
    1064-1074

    High frame rate and ultra-low delay vision system, which can finish reading and processing of 1000fps sequence within 1ms/frame, draws increasing attention in the field of robotics that requires immediate feedback from image process core. Meanwhile, tracking task plays an important role in many computer vision applications. Among various tracking algorithms, Lucas Kanade (LK)-based template tracking, which tracks targets with high accuracy over the sub-pixel level, is one of the keys for robotic applications, such as factory automation (FA). However, the substantial spatial iterative processing and complex computation in the LK algorithm, make it difficult to achieve a high frame rate and ultra-low delay tracking with limited resources. Aiming at an LK-based template tracking system that reads and processes 1000fps sequences within 1ms/frame with small resource costs, this paper proposes: 1) High temporal resolution-based temporal iterative tracking, which maps the spatial iterations into the temporal domain, efficiently reduces resource cost and delay caused by spatial iterative processing. 2) Label scanner-based multi-stream spatial processing, which maps the local spatial processing into the labeled input pixel stream and aggregates them with a label scanner, makes the local spatial processing in the LK algorithm possible be implemented with a small resource cost. Algorithm evaluation shows that the proposed temporal iterative tracking performs dynamic tracking, which tracks object with coarse accuracy when it's moving fast and achieves higher accuracy when it slows down. Hardware evaluation shows that the proposed label scanner-based multi-stream architecture makes the system implemented on FPGA (zcu102) with resource cost less than 20%, and the designed tracking system supports to read and process 1000fps sequence within 1ms/frame.

  • 4K 120fps HEVC Encoder with Multi-Chip Configuration Open Access

    Yuya OMORI  Ken NAKAMURA  Takayuki ONISHI  Daisuke KOBAYASHI  Tatsuya OSAWA  Hiroe IWASAKI  

     
    PAPER

      Pubricized:
    2021/02/04
      Vol:
    E104-B No:7
      Page(s):
    749-759

    This paper describes a novel 4K 120fps (frames per second) real-time HEVC (High Efficiency Video Coding) encoder for high-frame-rate video encoding and transmission. Motion portrayal problems such as motion blur and jerkiness may occur in video scenes containing fast-moving objects or quick camera panning. A high-frame-rate solves such problems and provides a more immersive viewing experience that can express even the fast-moving scenes without discomfort. It can also be used in remote operation for scenes with high motion, such as VAR (Video Assistant Referee) systems in sports. Real-time encoding of high-frame-rate videos with low latency and temporal scalability is required for providing such high-frame-rate video services. The proposed encoder achieves full 4K/120fps real-time encoding, which is twice the current 4K service frame rate of 60fps, by multichip configuration with two encoder LSI. Exchange of reference picture data near a spatially divided slice boundary provides cross-chip motion estimation, and maintains the coding efficiency. The encoder supports temporal-scalable coding mode, in which it output stream with temporal scalability transmitted over one or two transmission paths. The encoder also supports the other mode, low-delay coding mode, in which it achieves 21.8msec low-latency processing through motion vector restriction. Evaluation of the proposed encoder's multichip configuration shows that the BD-bitrate (the average rate of bitrate increase), compared to simple slice division without inter-chip transfer, is -2.86% at minimum and -2.41% on average in temporal-scalable coding mode. The proposed encoder system will open the door to the next generation of high-frame-rate UHDTV (ultra-high-definition television) services.

  • An MMT-Based Hierarchical Transmission Module for 4K/120fps Temporally Scalable Video

    Yasuhiro MOCHIDA  Takayuki NAKACHI  Takahiro YAMAGUCHI  

     
    PAPER

      Pubricized:
    2020/06/22
      Vol:
    E103-D No:10
      Page(s):
    2059-2066

    High frame rate (HFR) video is attracting strong interest since it is considered as a next step toward providing Ultra-High Definition video service. For instance, the Association of Radio Industries and Businesses (ARIB) standard, the latest broadcasting standard in Japan, defines a 120 fps broadcasting format. The standard stipulates temporally scalable coding and hierarchical transmission by MPEG Media Transport (MMT), in which the base layer and the enhancement layer are transmitted over different paths for flexible distribution. We have developed the first ever MMT transmitter/receiver module for 4K/120fps temporally scalable video. The module is equipped with a newly proposed encapsulation method of temporally scalable bitstreams with correct boundaries. It is also designed to be tolerant to severe network constraints, including packet loss, arrival timing offset, and delay jitter. We conducted a hierarchical transmission experiment for 4K/120fps temporally scalable video. The experiment demonstrated that the MMT module was successfully fabricated and capable of dealing with severe network constraints. Consequently, the module has excellent potential as a means to support HFR video distribution in various network situations.

  • Temporally Forward Nonlinear Scale Space for High Frame Rate and Ultra-Low Delay A-KAZE Matching System

    Songlin DU  Yuan LI  Takeshi IKENAGA  

     
    PAPER

      Pubricized:
    2020/03/06
      Vol:
    E103-D No:6
      Page(s):
    1226-1235

    High frame rate and ultra-low delay are the most essential requirements for building excellent human-machine-interaction systems. As a state-of-the-art local keypoint detection and feature extraction algorithm, A-KAZE shows high accuracy and robustness. Nonlinear scale space is one of the most important modules in A-KAZE, but it not only has at least one frame delay and but also is not hardware friendly. This paper proposes a hardware oriented nonlinear scale space for high frame rate and ultra-low delay A-KAZE matching system. In the proposed matching system, one part of nonlinear scale space is temporally forward and calculated in the previous frame (proposal #1), so that the processing delay is reduced to be less than 1 ms. To improve the matching accuracy affected by proposal #1, pre-adjustment of nonlinear scale (proposal #2) is proposed. Previous two frames are used to do motion estimation to predict the motion vector between previous frame and current frame. For further improvement of matching accuracy, pixel-level pre-adjustment (proposal #3) is proposed. The pre-adjustment changes from block-level to pixel-level, each pixel is assigned an unique motion vector. Experimental results prove that the proposed matching system shows average matching accuracy higher than 95% which is 5.88% higher than the existing high frame rate and ultra-low delay matching system. As for hardware performance, the proposed matching system processes VGA videos (640×480 pixels/frame) at the speed of 784 frame/second (fps) with a delay of 0.978 ms/frame.

  • Temporal Constraints and Block Weighting Judgement Based High Frame Rate and Ultra-Low Delay Mismatch Removal System

    Songlin DU  Zhe WANG  Takeshi IKENAGA  

     
    PAPER

      Pubricized:
    2020/03/18
      Vol:
    E103-D No:6
      Page(s):
    1236-1246

    High frame rate and ultra-low delay matching system plays an increasingly important role in human-machine interactions, because it guarantees high-quality experiences for users. Existing image matching algorithms always generate mismatches which heavily weaken the performance the human-machine-interactive systems. Although many mismatch removal algorithms have been proposed, few of them achieve real-time speed with high frame rate and low delay, because of complicated arithmetic operations and iterations. This paper proposes a temporal constraints and block weighting judgement based high frame rate and ultra-low delay mismatch removal system. The proposed method is based on two temporal constraints (proposal #1 and proposal #2) to firstly find some true matches, and uses these true matches to generate block weighting (proposal #3). Proposal #1 finds out some correct matches through checking a triangle route formed by three adjacent frames. Proposal #2 further reduces mismatch risk by adding one more time of matching with opposite matching direction. Finally, proposal #3 distinguishes the unverified matches to be correct or incorrect through weighting of each block. Software experiments show that the proposed mismatch removal system achieves state-of-the-art accuracy in mismatch removal. Hardware experiments indicate that the designed image processing core successfully achieves real-time processing of 784fps VGA (640×480 pixels/frame) video on field programmable gate array (FPGA), with a delay of 0.858 ms/frame.

  • Low Delay 4K 120fps HEVC Decoder with Parallel Processing Architecture

    Ken NAKAMURA  Daisuke KOBAYASHI  Yuya OMORI  Tatsuya OSAWA  Takayuki ONISHI  Koyo NITTA  Hiroe IWASAKI  

     
    PAPER

      Vol:
    E103-C No:3
      Page(s):
    77-84

    In this paper, we describe a novel low-delay 4K 120-fps real-time HEVC decoder with a parallel processing architecture that conforms to the HEVC main 4:2:2 10 profile. It supports the hierarchical temporal scalable streams required for Ultra High Definition high-frame-rate broadcasting and also supports low-delay and high-bitrate decoding for video transmission uses. To achieve this support, the decoding processes are parallelized and pipelined at the frame level, slice level, and coding tree unit row level. The proposed decoder was implemented on three FPGAs operated at 133 and 150 MHz, and it achieved 300-Mbps stream decoding and 37-msec end-to-end delay with our concurrently developed 4K 120-fps encoder.

  • Adaptive-Partial Template Update with Center-Shifting Recovery for High Frame Rate and Ultra-Low Delay Deformation Matching

    Songlin DU  Yuhao XU  Tingting HU  Takeshi IKENAGA  

     
    PAPER-Image

      Vol:
    E102-A No:12
      Page(s):
    1872-1881

    High frame rate and ultra-low delay matching system plays an important role in various human-machine interactive applications, which demands better performance in matching deformable and out-of-plane rotating objects. Although many algorithms have been proposed for deformation tracking and matching, few of them are suitable for hardware implementation due to complicated operations and large time consumption. This paper proposes a hardware-oriented template update and recovery method for high frame rate and ultra-low delay deformation matching system. In the proposed method, the new template is generated in real time by partially updating the template descriptor and adding new keypoints simultaneously with the matching process in pixels (proposal #1), which avoids the large inter-frame delay. The size and shape of region of interest (ROI) are made flexible and the Hamming threshold used for brute-force matching is adjusted according to pixel position and the flexible ROI (proposal #2), which solves the problem of template drift. The template is recovered by the previous one with a relative center-shifting vector when it is judged as lost via region-wise difference check (proposal #3). Evaluation results indicate that the proposed method successfully achieves the real-time processing of 784fps at the resolution of 640×480 on field-programmable gate array (FPGA), with a delay of 0.808ms/frame, as well as achieves satisfactory deformation matching results in comparison with other general methods.

  • Pixel Selection and Intensity Directed Symmetry for High Frame Rate and Ultra-Low Delay Matching System

    Tingting HU  Takeshi IKENAGA  

     
    PAPER-Machine Vision and its Applications

      Pubricized:
    2018/02/16
      Vol:
    E101-D No:5
      Page(s):
    1260-1269

    High frame rate and ultra-low delay matching system plays an increasingly important role in human-machine interactive applications which call for higher frame rate and lower delay for a better experience. The large amount of processing data and the complex computation in a local feature based matching system, make it difficult to achieve a high process speed and ultra-low delay matching with limited resource. Aiming at a matching system with the process speed of more than 1000 fps and with the delay of less than 1 ms/frame, this paper puts forward a local binary feature based matching system with field-programmable gate array (FPGA). Pixel selection based 4-1-4 parallel matching and intensity directed symmetry are proposed for the implementation of this system. To design a basic framework with the high process speed and ultra-low delay using limited resource, pixel selection based 4-1-4 parallel matching is proposed, which makes it possible to use only one-thread resource consumption to achieve a four-thread processing. Assumes that the orientation of the keypoint will bisect the patch best and will point to the region with high intensity, intensity directed symmetry is proposed to calculate the keypoint orientation in a hardware friendly way, which is an important part for a rotation-robust matching system. Software experiment result shows that the proposed keypoint orientation calculation method achieves almost the same performance with the state-of-art intensity centroid orientation calculation method in a matching system. Hardware experiment result shows that the designed image process core supports to process VGA (640×480) videos at a process speed of 1306 fps and with a delay of 0.8083 ms/frame.