1-4hit |
Longfei CHEN Yuichi NAKAMURA Kazuaki KONDO Dima DAMEN Walterio MAYOL-CUEVAS
We propose a novel framework for integrating beginners' machine operational experiences with those of experts' to obtain a detailed task model. Beginners can provide valuable information for operation guidance and task design; for example, from the operations that are easy or difficult for them, the mistakes they make, and the strategy they tend to choose. However, beginners' experiences often vary widely and are difficult to integrate directly. Thus, we consider an operational experience as a sequence of hand-machine interactions at hotspots. Then, a few experts' experiences and a sufficient number of beginners' experiences are unified using two aggregation steps that align and integrate sequences of interactions. We applied our method to more than 40 experiences of a sewing task. The results demonstrate good potential for modeling and obtaining important properties of the task.
Longfei CHEN Yuichi NAKAMURA Kazuaki KONDO Walterio MAYOL-CUEVAS
This paper presents an approach to analyze and model tasks of machines being operated. The executions of the tasks were captured through egocentric vision. Each task was decomposed into a sequence of physical hand-machine interactions, which are described with touch-based hotspots and interaction patterns. Modeling the tasks was achieved by integrating the experiences of multiple experts and using a hidden Markov model (HMM). Here, we present the results of more than 70 recorded egocentric experiences of the operation of a sewing machine. Our methods show good potential for the detection of hand-machine interactions and modeling of machine operation tasks.
Chien-Hui LIAO Charles H.-P. WEN
Hotspots occur frequently in 3D multi-core processors (3D-MCPs), and they may adversely impact both the reliability and lifetime of a system. We present a new thermally constrained task scheduler based on a thermal-pattern-aware voltage assignment (TPAVA) to reduce hotspots in and optimize the performance of 3D-MCPs. By analyzing temperature profiles of different voltage assignments, TPAVA pre-emptively assigns different initial operating-voltage levels to cores for reducing temperature increase in 3D-MCPs. The proposed task scheduler consists of an on-line allocation strategy and a new voltage-scaling strategy. In particular, the proposed on-line allocation strategy uses the temperature-variation rates of the cores and takes into two important thermal behaviors of 3D-MCPs that can effectively minimize occurrences of hotspots in both thermally homogeneous and heterogeneous 3D-MCPs. Furthermore, a new vertical-grouping voltage scaling (VGVS) strategy that considers thermal correlation in 3D-MCPs is used to handle thermal emergencies. Experimental results indicate that, when compared to a previous online thermally constrained task scheduler, the proposed task scheduler can reduce hotspot occurrences by approximately 66% (71%) and improve throughput by approximately 8% (2%) in thermally homogeneous (heterogeneous) 3D-MCPs. These results indicate that the proposed task scheduler is an effective technique for suppressing hotspot occurrences and optimizing throughput for 3D-MCPs subject to thermal constraints.
Bo GU Kyoko YAMORI Sugang XU Yoshiaki TANAKA
With the proliferation of IEEE 802.11 wireless local area networks, large numbers of wireless access points have been deployed, and it is often the case that a user can detect several access points simultaneously in dense metropolitan areas. Most owners, however, encrypt their networks to prevent the public from accessing them due to the increased traffic and security risk. In this work, we use pricing as an incentive mechanism to motivate the owners to share their networks with the public, while at the same time satisfying users' service demand. Specifically, we propose a “federated network” concept, in which radio resources of various wireless local area networks are managed together. Our algorithm identifies two candidate access points with the lowest price being offered (if available) to each user. We then model the price announcements of access points as a game, and characterize the Nash Equilibrium of the system. The efficiency of the Nash Equilibrium solution is evaluated via simulation studies as well.