The search functionality is under construction.

Keyword Search Result

[Keyword] hybrid precoding(5hit)

1-5hit
  • Low-Complexity Hybrid Precoding Based on PAST for Millimeter Wave Massive MIMO System Open Access

    Rui JIANG  Xiao ZHOU  You Yun XU  Li ZHANG  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/04/21
      Vol:
    E105-B No:10
      Page(s):
    1192-1201

    Millimeter wave (mmWave) massive Multiple-Input Multiple-Output (MIMO) systems generally adopt hybrid precoding combining digital and analog precoder as an alternative to full digital precoding to reduce RF chains and energy consumption. In order to balance the relationship between spectral efficiency, energy efficiency and hardware complexity, the hybrid-connected system structure should be adopted, and then the solution process of hybrid precoding can be simplified by decomposing the total achievable rate into several sub-rates. However, the singular value decomposition (SVD) incurs high complexity in calculating the optimal unconstrained hybrid precoder for each sub-rate. Therefore, this paper proposes PAST, a low complexity hybrid precoding algorithm based on projection approximate subspace tracking. The optimal unconstrained hybrid precoder of each sub-rate is estimated with the PAST algorithm, which avoids the high complexity process of calculating the left and right singular vectors and singular value matrix by SVD. Simulations demonstrate that PAST matches the spectral efficiency of SVD-based hybrid precoding in full-connected (FC), hybrid-connected (HC) and sub-connected (SC) system structure. Moreover, the superiority of PAST over SVD-based hybrid precoding in terms of complexity and increases with the number of transmitting antennas.

  • An Energy-Efficient Hybrid Precoding Design in mmWave Massive MIMO Systems

    Xiaolei QI  Gang XIE  Yuanan LIU  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2020/11/26
      Vol:
    E104-B No:6
      Page(s):
    647-653

    The hybrid precoding (HP) technique has been widely considered as a promising approach for millimeter wave communication systems. In general, the existing HP structure with a complicated high-resolution phase shifter network can achieve near-optimal spectral efficiency, however, it involves high energy consumption. The HP architecture with an energy-efficient switch network can significantly reduce the energy consumption. To achieve maximum energy efficiency, this paper focuses on the HP architecture with switch network and considers a novel adaptive analog network HP structure for such mmWave MIMO systems, which can provide potential array gains. Moreover, a multiuser adaptive coordinate update algorithm is proposed for the HP design problem of this new structure. Simulation results verify that our proposed design can achieve better energy efficiency than other recently proposed HP schemes when the number of users is small.

  • Proactive Eavesdropping for Suspicious Millimeter Wave Wireless Communications with Spoofing Relay

    Cheng CHEN  Haibo DAI  Tianwen GUO  Qiang YU  Baoyun WANG  

     
    LETTER-Communication Theory and Signals

      Vol:
    E102-A No:4
      Page(s):
    691-696

    This paper investigates the wireless information surveillance in a suspicious millimeter wave (mmWave) wireless communication system via the spoofing relay based proactive eavesdropping approach. Specifically, the legitimate monitor in the system acts as a relay to simultaneously eavesdrop and send spoofing signals to vary the source transmission rate. To maximize the effective eavesdropping rate, an optimization problem for both hybrid precoding design and power distribution is formulated. Since the problem is fractional and non-convex, we resort to the Dinkelbach method to equivalently reduce the original problem into a series of non-fractional problems, which is still coupling. Afterwards, based on the BCD-type method, the non-fractional problem is reduced to three subproblems with two introduced parameters. Then the GS-PDD-based algorithm is proposed to obtain the optimal solution by alternately optimizing the three subproblems and simultaneously updating the introduced parameters. Numerical results verify the effectiveness and superiority of our proposed scheme.

  • Hybrid BD-GMD Precoding for Multiuser Millimeter-Wave Massive MIMO Systems

    Wei WU  Danpu LIU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2018/06/27
      Vol:
    E102-B No:1
      Page(s):
    63-75

    The potential for using millimeter-wave (mmWave) frequencies in future 5G wireless cellular communication systems has motivated the study of large-scale antenna arrays to achieve highly directional beamforming. However, the conventional fully digital beamforming (DBF) methods which require one radio frequency (RF) chain per antenna element are not viable for large-scale antenna arrays due to the high cost and large power consumption of high frequency RF chain components. Hybrid precoding can significantly reduce the number of required RF chains and relieve the huge power consumption in mmWave massive multiple-input multiple-output (MIMO) systems, thus attracting much interests from academic and industry. In this paper, we consider the downlink communication of a massive multiuser MIMO (MU-MIMO) system in the mmWave channel, and propose a low complexity hybrid block diagonal geometric mean decomposition (BD-GMD) scheme. More specially, a joint transmit-receive (Tx-Rx) analog beamforming with large-scale arrays is proposed to improve channel gain, and then a low-dimensional BD-GMD approach is implemented at the equivalent baseband channel to mitigate the inter-user interference and equalize different data streams of each user. With the help of successive interference cancellation (SIC) at the receiver, we can decompose each user's MIMO channel into parallel sub-channels with identical higher SNRs/SINRs, thus equal-rate coding can be applied across the sub-channels of each user. Finally, simulation results verify that the proposed hybrid BD-GMD precoding scheme outperforms existing conventional fully digital and hybrid precoding schemes and is able to achieve much better BER performance.

  • Low-Complexity Hybrid Precoding Design for MIMO-OFDM Millimeter Wave Communications

    Yue DONG  Chen CHEN  Na YI  Shijian GAO  Ye JIN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2017/02/08
      Vol:
    E100-B No:8
      Page(s):
    1228-1237

    Hybrid analog/digital precoding has attracted growing attention for millimeter wave (mmWave) communications, since it can support multi-stream data transmission with limited hardware cost. A main challenge in implementing hybrid precoding is that the channels will exhibit frequency-selective fading due to the large bandwidth. To this end, we propose a practical hybrid precoding scheme with finite-resolution phase shifters by leveraging the correlation among the subchannels. Furthermore, we utilize the sparse feature of the mmWave channels to design a low-complexity algorithm to realize the proposed hybrid precoding, which can avoid the complication of the high-dimensionality eigenvalue decomposition. Simulation results show that the proposed hybrid precoding can approach the performance of unconstrained fully-digital precoding but with low hardware cost and computational complexity.