1-2hit |
Chao WANG Michihiko OKUYAMA Ryo MATSUOKA Takahiro OKABE
Water detection is important for machine vision applications such as visual inspection and robot motion planning. In this paper, we propose an approach to per-pixel water detection on unknown surfaces with a hyperspectral image. Our proposed method is based on the water spectral characteristics: water is transparent for visible light but translucent/opaque for near-infrared light and therefore the apparent near-infrared spectral reflectance of a surface is smaller than the original one when water is present on it. Specifically, we use a linear combination of a small number of basis vector to approximate the spectral reflectance and estimate the original near-infrared reflectance from the visible reflectance (which does not depend on the presence or absence of water) to detect water. We conducted a number of experiments using real images and show that our method, which estimates near-infrared spectral reflectance based on the visible spectral reflectance, has better performance than existing techniques.
Hongwei HAN Ke GUO Maozhi WANG Tingbin ZHANG Shuang ZHANG
The sparse unmixing of hyperspectral data has attracted much attention in recent years because it does not need to estimate the number of endmembers nor consider the lack of pure pixels in a given hyperspectral scene. However, the high mutual coherence of spectral libraries strongly affects the practicality of sparse unmixing. The collaborative sparse unmixing via variable splitting and augmented Lagrangian (CLSUnSAL) algorithm is a classic sparse unmixing algorithm that performs better than other sparse unmixing methods. In this paper, we propose a CLSUnSAL-based hyperspectral unmixing method based on dictionary pruning and reweighted sparse regression. First, the algorithm identifies a subset of the original library elements using a dictionary pruning strategy. Second, we present a weighted sparse regression algorithm based on CLSUnSAL to further enhance the sparsity of endmember spectra in a given library. Third, we apply the weighted sparse regression algorithm on the pruned spectral library. The effectiveness of the proposed algorithm is demonstrated on both simulated and real hyperspectral datasets. For simulated data cubes (DC1, DC2 and DC3), the number of the pruned spectral library elements is reduced by at least 94% and the runtime of the proposed algorithm is less than 10% of that of CLSUnSAL. For simulated DC4 and DC5, the runtime of the proposed algorithm is less than 15% of that of CLSUnSAL. For the real hyperspectral datasets, the pruned spectral library successfully reduces the original dictionary size by 76% and the runtime of the proposed algorithm is 11.21% of that of CLSUnSAL. These experimental results show that our proposed algorithm not only substantially improves the accuracy of unmixing solutions but is also much faster than some other state-of-the-art sparse unmixing algorithms.