The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] image synthesis(6hit)

1-6hit
  • Instance Segmentation by Semi-Supervised Learning and Image Synthesis

    Takeru OBA  Norimichi UKITA  

     
    PAPER

      Pubricized:
    2020/03/18
      Vol:
    E103-D No:6
      Page(s):
    1247-1256

    This paper proposes a method to create various training images for instance segmentation in a semi-supervised manner. In our proposed learning scheme, a few 3D CG models of target objects and a large number of images retrieved by keywords from the Internet are employed for initial model training and model update, respectively. Instance segmentation requires pixel-level annotations as well as object class labels in all training images. A possible solution to reduce a huge annotation cost is to use synthesized images as training images. While image synthesis using a 3D CG simulator can generate the annotations automatically, it is difficult to prepare a variety of 3D object models for the simulator. One more possible solution is semi-supervised learning. Semi-supervised learning such as self-training uses a small set of supervised data and a huge number of unsupervised data. The supervised images are given by the 3D CG simulator in our method. From the unsupervised images, we have to select only correctly-detected annotations. For selecting the correctly-detected annotations, we propose to quantify the reliability of each detected annotation based on its silhouette as well as its textures. Experimental results demonstrate that the proposed method can generate more various images for improving instance segmentation.

  • High-Quality Multi-View Image Extraction from a Light Field Camera Considering Its Physical Pixel Arrangement

    Shu FUJITA  Keita TAKAHASHI  Toshiaki FUJII  

     
    INVITED PAPER

      Pubricized:
    2019/01/28
      Vol:
    E102-D No:4
      Page(s):
    702-714

    We propose a method for extracting multi-view images from a light field (plenoptic) camera that accurately handles the physical pixel arrangement of this camera. We use a Lytro Illum camera to obtain 4D light field data (a set of multi-viewpoint images) through a micro-lens array. The light field data are multiplexed on a single image sensor, and thus, the data is first demultiplexed into a set of multi-viewpoint (sub-aperture) images. However, the demultiplexing process usually includes interpolation of the original data such as demosaicing for a color filter array and pixel resampling for the hexagonal pixel arrangement of the original sub-aperture images. If this interpolation is performed, some information is added or lost to/from the original data. In contrast, we preserve the original data as faithfully as possible, and use them directly for the super resolution reconstruction, where the super-resolved image and the corresponding depth map are alternatively refined. We experimentally demonstrate the effectiveness of our method in resolution enhancement through comparisons with Light Field Toolbox and Lytro Desktop Application. Moreover, we also mention another type of light field cameras, a Raytrix camera, and describe how it can be handled to extract high-quality multi-view images.

  • Query-by-Sketch Based Image Synthesis

    David GAVILAN  Suguru SAITO  Masayuki NAKAJIMA  

     
    PAPER-Image Processing and Video Processing

      Vol:
    E91-D No:9
      Page(s):
    2341-2352

    Using query-by-sketch we propose an application to efficiently create collages with some user interaction. Using rough color strokes that represent the target collage, images are automatically retrieved and segmented to create a seamless collage. The database is indexed using simple geometrical and color features for each region, and histograms that represent these features for each image. The image collection is then queried by means of a simple paint tool. The individual segments retrieved are added to the collage using Poisson image editing or alpha matting. The user is able to modify the default segmentations interactively, as well as the position, scale, and blending options for each object. The resulting collage can then be used as an input query to find other relevant images from the database.

  • Real Time Creation of Pseudo 2D HMMs for Composite Keyword Spotting in Document Images

    Beom-Joon CHO  Bong-Kee SIN  Jin H. KIM  

     
    PAPER-Image Recognition, Computer Vision

      Vol:
    E87-D No:10
      Page(s):
    2379-2388

    The traditional methods of HMM, although highly successful in 1-D time series analysis, have not yet been successfully extended to 2-D image analysis while fully exploiting the hierarchical design and extension of HMM networks for complex structured signals. Apart from the traditional method off-line training of the Baum-Welch algorithm, we propose a new method of real time creation of word or composite character HMMs for 2-D word/character patterns. Unlike the Latin words in which letters run left-to-right, the composition of word/character components need not be linear, as in Korean Hangul and Chinese characters. The key idea lies in the character composition at the image level and the image-to-model conversion followed by redundancy reduction. Although the resulting model is not optimal, the proposed method has much greater advantage in regard to memory usage and training difficulty. In a series of experiments in character/word spotting in document images, the system recorded the hit ratios of 80% and 67% in Hangul character and word spotting respectively without language models.

  • Modeling of Urban Scenes by Aerial Photographs and Simply Reconstructed Buildings

    Katsuyuki KAMEI  Wayne HOY  Takashi TAMADA  Kazuo SEO  

     
    PAPER

      Vol:
    E83-D No:7
      Page(s):
    1441-1449

    In many fields such as city administration and facilities management, there are an increasing number of requests for a Geographic Information System (GIS) that provides users with automated mapping functions. A mechanism which displays 3D views of an urban scene is particularly required because it would allow the construction of an intuitive and understandable environment for managing objects in the scene. In this paper, we present a new urban modeling system utilizing both image-based and geometry-based approaches. Our method is based on a new concept in which a wide urban area can be displayed with natural photo-realistic images, and each object drawn in the view can be identified by pointing to it. First, to generate natural urban views from any viewpoint, we employ an image-based rendering method, Image Walkthrough, and modify it to handle aerial images. This method can interpolate and generate natural views by assembling several source photographs. Next, to identify each object in the scene, we recover its shape using computer vision techniques (a geometry-based approach). The rough shape of each building is reconstructed from various aerial images, and then its drawn position on the generated view is also determined. This means that it becomes possible to identify each building from an urban view. We have combined both of these approaches yielding a new style of urban information management. The users of the system can enjoy an intuitive understanding of the area and easily identify their target, by generating natural views from any viewpoint and suitably reconstructing the shapes of objects. We have made a prototype system of this new concept of GIS, which have shown the validity of our method.

  • Image Synthesis Based on Estimation of Camera Parameters from Image Sequence

    Jong-Il PARK  Nobuyuki YAGI  Kazumasa ENAMI  

     
    PAPER

      Vol:
    E77-D No:9
      Page(s):
    973-986

    This paper describes an image synthesis method based on an estimation of camera parameters. In order to acquire high quality images using image synthesis, we take some constraints into account, which include angle of view, synchronization of change of scale and change of viewing direction. The proposed method is based on an investigation that any camera operation containing a change of scale and a pure 3D rotation can be represented by a 2D geometric transformation. The transformation can explain all the synthesis procedure consisting of locating, synchronizing, and operating images. The procedure is described based on a virtual camera which is constituted of a virtual viewing point and a virtual image plain. The method can be efficiently implemented in such a way that each image to be synthesized undergoes the transformation only one time. The parameters in the image transformation are estimated from image sequence. The estimation scheme consists of first establishing correspondence and then estimating the parameters by fitting the correspondence data to the transformation model. We present experimental results and show the validity of the proposed method.