The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] interconnects(21hit)

21hit(21hit)

  • Characterizing Film Quality and Electromigration Resistance of Giant-Grain Copper Interconnects

    Takahisa NITTA  Tadahiro OHMI  Tsukasa HOSHI  Toshiyuki TAKEWAKI  Tadashi SHIBATA  

     
    PAPER-Process Technology

      Vol:
    E76-C No:4
      Page(s):
    626-634

    The performance of copper interconnects formed by the low-kinetic-energy ion bombardment process has been investigated. The copper films formed on SiO2 by this technology under a sufficient amount of ion energy deposition exhibit perfect orientation conversion from Cu (111) to Cu (100) upon post-metallization thermal annealing. We have discovered such crystal orientation conversion is always accompanied by a giant-grain growth as large as 100 µm. The copper film resistivity decreases due to the decrease in the grain boundary scattering, when the giant-grain growth occurs in the film. The resistivity of giant-grain copper film at a room temperature is 1.76 µΩcm which is almost equal to the bulk resistivity of copper. Furthermore, a new-accelerated electromigration life-test method has been developed to evaluate copper interconnects having large electromigration resistance within a very short period of test time. The essence of the new method is the acceleration by a large-current-stress of more than 107 A/cm2 and to utilize the self heating of test interconnect for giving temperature stress. In order to avoid uncontrollable thermal runaway and resultant interconnect melting, we adopted a very efficient cooling system that immediately removes Joule heat and keeps the interconnect temperature constant. As a result, copper interconnects formed by the low-kinetic-energy ion bombardment process exhibit three orders of magnitude longer lifetime at 300 K than Al alloy interconnects.

21hit(21hit)