The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] interference prevention(3hit)

1-3hit
  • Trip-Based Integer Linear Programming Model for Static Multi-Car Elevator Operation Problems

    Tsutomu INAMOTO  Yoshinobu HIGAMI  Shin-ya KOBAYASHI  

     
    PAPER

      Vol:
    E100-A No:2
      Page(s):
    385-394

    In this paper, the authors propose an integer linear programming (ILP) model for static multi-car elevator operation problems. Here, “static” means that all information which make the behavior of the elevator system indeterministic is known before scheduling. The proposed model is based on the trip-based ILP model for static single-car elevator operation problems. A trip of an elevator is a one-directional movement of that elevator, which is labaled upward or downward. In the trip-based ILP model, an elevator trajectory is scheduled according to decision variables which determine allocations of trips to users of an elevator system. That model has such an advantage that the difficulty in solving ILP formulations resulted by that model does not depend on the length of the planning horizon nor the height of the considered building, thus is effective when elevator trajectories are simple. Moreover, that model has many variables relevant to elevators' positions. The proposed model is resulted by adding 3 constraints which are basically based on those variables and make it possible to prevent elevators in a same shaft from interfering. The first constraint simply imposes the first and last floors of an upper trip to be above those of its lower trip. The second constraint imagines the crossing point between upper and lower trips and imposes it ahead of or behind the lower trip according to their directions. The last constraint estimates future positions of elevators and imposes the upper trip to be above floors of passengers on the lower trip. The basic validity of the proposed model is displayed by solving 90 problem instances and examining elevator trajectories generated from them, then comparing objective function values of elevator trajectories on a multi-car elevator system with those on single-car elevator systems.

  • Knowledge Reuse Method to Improve the Learning of Interference-Preventive Allocation Policies in Multi-Car Elevators

    Alex VALDIVIELSO CHIAN  Toshiyuki MIYAMOTO  

     
    LETTER-Concurrent Systems

      Vol:
    E95-A No:5
      Page(s):
    990-995

    In this letter, we introduce a knowledge reuse method to improve the performance of a learning algorithm developed to prevent interference in multi-car elevators. This method enables the algorithm to use its previously acquired experience in new learning processes. The simulation results confirm the improvement achieved in the algorithm's performance.

  • Performance Evaluation of an Option-Based Learning Algorithm in Multi-Car Elevator Systems

    Alex VALDIVIELSO CHIAN  Toshiyuki MIYAMOTO  

     
    LETTER-Concurrent Systems

      Vol:
    E95-A No:4
      Page(s):
    835-839

    In this letter, we present the evaluation of an option-based learning algorithm, developed to perform a conflict-free allocation of calls among cars in a multi-car elevator system. We evaluate its performance in terms of the service time, its flexibility in the task-allocation, and the load balancing.