The search functionality is under construction.

Keyword Search Result

[Keyword] joint selection(2hit)

1-2hit
  • Outage Performance of Multi-Carrier Relay Selections in Multi-Hop OFDM with Index Modulation

    Pengli YANG  Fuqi MU  

     
    LETTER-Communication Theory and Signals

      Vol:
    E103-A No:3
      Page(s):
    638-642

    In this letter, we adopt two multi-carrier relay selections, i.e., bulk and per-subcarrier (PS), to the multi-hop decode-and-forward relaying orthogonal frequency-division multiplexing with index modulation (OFDM-IM) system. Particularly, in the form of average outage probability (AOP), the influence of joint selection and non-joint selection acting on the last two hops on the system is analyzed. The closed-form expressions of AOPs and the asymptotic AOPs expressions at high signal-to-noise ratio are given and verified by numerical simulations. The results show that both bulk and PS can achieve full diversity order and that PS can provide additional power gain compared to bulk when JS is used. The theoretical analyses in this letter provide an insight into the combination of OFDM-IM and cooperative communication.

  • User and Antenna Joint Selection in Multi-User Large-Scale MIMO Downlink Networks

    Moo-Woong JEONG  Tae-Won BAN  Bang Chul JUNG  

     
    PAPER-Network

      Pubricized:
    2016/11/02
      Vol:
    E100-B No:4
      Page(s):
    529-535

    In this paper, we investigate a user and antenna joint selection problem in multi-user large-scale MIMO downlink networks, where a BS with N transmit antennas serves K users, and N is much larger than K. The BS activates only S(S≤N) antennas for data transmission to reduce hardware cost and computation complexity, and selects the set of users to which data is to be transmitted by maximizing the sum-rate. The optimal user and antenna joint selection scheme based on exhaustive search causes considerable computation complexity. Thus, we propose a new joint selection algorithm with low complexity and analyze the performance of the proposed scheme in terms of sum-rate and complexity. When S=7, N=10, K=5, and SNR=10dB, the sum-rate of the proposed scheme is 5.1% lower than that of the optimal scheme, while the computation complexity of the proposed scheme is reduced by 99.0% compared to that of the optimal scheme.