The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] layer-by-layer(4hit)

1-4hit
  • Evaluation of a PAH/PSS Layer-by-Layer Deposited Film Using a Quartz-Crystal-Microbalance and Surface-Plasmon-Resonance Hybrid Sensor

    Keisuke KAWACHI  Kazunari SHINBO  Yasuo OHDAIRA  Akira BABA  Keizo KATO  Futao KANEKO  

     
    BRIEF PAPER

      Vol:
    E98-C No:2
      Page(s):
    136-138

    A quartz-crystal-microbalance (QCM) and surface-plasmon-resonance (SPR) hybrid sensor was prepared, and the depositions of polymer electrolytes layer-by-layer (LbL) films were observed in situ. The estimated thicknesses obtained from the QCM method were different from those obtained from the SPR method. This was estimated to be caused by film swelling and water contained in the film.

  • Anti Reflection Films Fabricated by Roll-to-Roll Layer-by-Layer Adsorption Process

    Shiro FUJITA  Koji FUJIMOTO  Takayuki NAKA  Seimei SHIRATORI  

     
    PAPER-Characterization and Abilities of Organic Electronic Devices

      Vol:
    E87-C No:12
      Page(s):
    2064-2070

    Recently, flexible and lightweight optical devices are desired from the practical viewpoint. We demonstrated roll-to-roll type Anti Reflection (AR) film fabricated by layer-by-layer (LBL) adsorption process. When deposition time was 2.5 min and repeating cycle was 8 cycles, refractive index of LBL layer was 1.499 at 632 nm and thickness was 93.1 nm, which are almost the same as those of batch type LBL layer. The minimum reflectance was about 0.6% at 600 nm and transmittance was over 75% at visible region. However as compared with batch type, roll type AR film has lower reflectance and transmittance. This reason is that the flow of solution and rinse and quantity of rinse was smaller, a number of bathes of roll type was lower than that of batch type. Furthermore, comparing the deposition time and film speed, LBL layer was fabricated clearly long deposition time and slow film speed. The roll-to-roll film had a problem of peeling off during the deposition process. By increasing the contact area between film and guided roll, vertical pressure was decrease and friction force was decreased. Furthermore, as rotational speed of guided roll and film speed was decreased, LBL layer was not peeled by friction force between film and guided roll. Because rotational speed of guided rolls and films were almost same in the range of less than about 30 mm/min. There was the problem that polymer complexes were likely to appear on the substrate when the surface was dried during moving between solution and rinse bath. This phenomenon was observed during the roll-to-roll as well as batch process. The quality of roll-to-roll LBL process was depending on deposition time and film speed and drying at moving process critically compared with batch type. It is necessary to design the roll-to-roll machine with care: important points are deposition time and film speed, drying at moving process.

  • Formation of Ultra-Thin Organic Films by Micelle-Wrapping Sequential Adsorption Method

    Seimei SHIRATORI  Takahiro ITO  

     
    PAPER-Ultra Thin Film

      Vol:
    E83-C No:7
      Page(s):
    1094-1098

    Layer-by-layer sequential adsorption process of polyelectrolytes had conventionally been used for the fabrication of the ultra-thin organic film formed by various polymers with different polarity of charge. In this study, hydrophobic Ruthenium complex monomer (tris (bilyridyl) ruthenium (II) hexafluorophosphate) was micelle-wrapped with an anionic surfactant, sodium dodecylbenzenesulfonate, and was assembled with PAH (poly (allylamine hydrochloride)) which has the opposite charge on ITO substrates. With this method, we succeed in fabricating ultra-thin organic films even when the adsorption material is not polymer but monomer. Moreover it was found that the bilayer thickness of the self-assembled (Ru micelle/PAH) was systematically changed by adjusting the solution pH of each bath. By using this process, EL device was fabricated by depositing the thin film of micelle-wrapping ruthenium complex monomer on ITO and formed Bi electrode on top of the film. Light emission was observed by applying voltage to this device.

  • Native Oxide Growth on Hydrogen-Terminated Silicon Surfaces

    Tatsuhiro YASAKA  Masaru TAKAKURA  Kenichi SAWARA  Shigeo UENAGA  Hiroshi YASUTAKE  Seiichi MIYAZAKI  Masataka HIROSE  

     
    PAPER

      Vol:
    E75-C No:7
      Page(s):
    764-769

    Hydrogen termination of HF-treated Si surfaces and the oxidation kinetics have been studied by x-ray photoelectron spectroscopy (XPS) and Fourier Transform Infrared Spectroscopy (FT-IR) Attenuated Total Reflection (ATR). The oxidation of hydrogen-terminated Si in air or in pure water proceeds parallel to the surface presumably from step edges, resulting in the layer-by-layer oxidation. The oxide gryowth rate on an Si(100) surface is faster than (110) and (111) when the wafer is stored in pure water. This is interpreted in terms of the steric hindrance against molecular oxygen penetration throughth the (110) and (111) surfaces where the atom void size is equal to or smaller than O2 molecule. The oxide growth rate in pure water for heavily doped n-type Si is significantly high compared to that of heavily doped p-type Si. This is explained by the conduction electron tunneling from Si to absorbed O2 molecule to form the O2- state. O2- ions easily decompose and induce the surface electric field, enhancing the oxidation rate. It is found that the oxidation of heavily doped n-type Si in pure water is effectively suppressed by adding a small amount (1003600 ppm) of HCl.