The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] level shifter(4hit)

1-4hit
  • Optimal Supply Voltage Assignment under Timing, Power and Area Constraints

    Hsi-An CHIEN  Cheng-Chiang LIN  Hsin-Hsiung HUANG  Tsai-Ming HSIEH  

     
    PAPER-VLSI Design Technology and CAD

      Vol:
    E93-A No:4
      Page(s):
    761-768

    Multiple supply voltage (MSV) assignment is a highly effective means of reducing power consumption. Many existing algorithms perform very well for power reduction. However, they do not handle the area issue of level shifters. In some cases, although one gets a superior result to reduce the power consumption, but many extra level shifters are needed to add so that the circuit area will be over the specification. In this paper, we present an effective integer linear programming (ILP)-based MSV assignment approach to solve two problems with different objectives. For the objective of power reduction under timing constraint, compared with GECVS algorithm, the power consumption obtained by our proposed approach can be further reduced 0 to 5.46% and the number of level shifters is improved 16.31% in average. For the objective of power reduction under constraints of both timing and area of level shifters, the average improvement of power consumption obtained by our algorithm is still better than GECVS while reducing the number of level shifters by 22.92% in average. In addition, given a constraint of total power consumption, our algorithm will generate a design having minimum circuit delay. Experimental results show that the proposed ILP-based MSV assignment algorithm solves different problems flexibly.

  • Voltage and Level-Shifter Assignment Driven Floorplanning

    Bei YU  Sheqin DONG  Song CHEN  Satoshi GOTO  

     
    PAPER-Physical Level Desing

      Vol:
    E92-A No:12
      Page(s):
    2990-2997

    Low Power Design has become a significant requirement when the CMOS technology entered the nanometer era. Multiple-Supply Voltage (MSV) is a popular and effective method for both dynamic and static power reduction while maintaining performance. Level shifters may cause area and Interconnect Length Overhead (ILO), and should be considered at both floorplanning and post-floorplanning stages. In this paper, we propose a two phases algorithm framework, called VLSAF, to solve voltage and level shifter assignment problem. At floorplanning phase, we use a convex cost network flow algorithm to assign voltage and a minimum cost flow algorithm to handle level-shifter assignment. At post-floorplanning phase, a heuristic method is adopted to redistribute white spaces and calculate the positions and shapes of level shifters. The experimental results show VLSAF is effective.

  • Fast-Delay and Low-Power Level Shifter for Low-Voltage Applications

    O-Sam KWON  Kyeong-Sik MIN  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:7
      Page(s):
    1540-1543

    A new level shifter is proposed in this paper that mitigates the contention problem between its pull-up and pull-down switches without suffering the delay penalty. Comparing this new one with two conventional shifters (CLS-1 and CLS-2) indicates that CLS-1 and CLS-2 have the delay times which are 308% and 26% slower than the proposed shifter when VDDL/VDDH=0.3 and the fan-out=2, respectively. In addition, the comparison of power-delay products shows CLS-2 consumes 28.5% more energy than the proposed shifter. For the layout area, the proposed shifter needs only 15% more than CLS-2. By comparing the propagation delay times, the power-delay products, and the area overhead, the proposed shifter is considered very suitable to future Very Deep Sub-Micron (VDSM) technologies with low-voltage applications.

  • A Novel High-Speed and Low-Voltage CMOS Level-Up/Down Shifter Design for Multiple-Power and Multiple-Clock Domain Chips

    Ji-Hoon LIM  Jong-Chan HA  Won-Young JUNG  Yong-Ju KIM  Jae-Kyung WEE  

     
    LETTER-Electronic Circuits

      Vol:
    E90-C No:3
      Page(s):
    644-648

    A novel high-speed and low-voltage CMOS level shifter circuit is proposed. The proposed circuit is suitable for block-level dynamic voltage and frequency scaling (DVFS) environment or multiple-clock and multiple-power-domain logic blocks. In order to achieve high performance in a chip consisting of logic blocks having different VDD voltages, the proposed circuit uses the circuit techniques to reduce the capacitive loading of input signals and to minimize the contention between pull-up and pull-down transistors through positive feedback loop. The techniques improve the slew rate of output signals, so that the level transient delay and duty distortions can be reduced. The proposed level up/down shifters are designed to operate over a wide range of voltage and frequency and verified with Berkeley's 65 nm CMOS model parameters, which can cover a voltage range from 0.6 to 1.6 V and at least frequency range up to 1000 MHz within 3% duty errors. Through simulation with Berkeley's 65 nm CMOS model parameters, the level shifter circuits can solve the duty distortion preventing them from high speed operation within the duty ratio error of 3% at 1 GHz. For verification through performance comparison with reported level shifts, the simulations are carried out with 0.35 µm CMOS technology, 0.13 µm IBM CMOS technology and Berkeley's 65 nm CMOS model parameters. The compared results show that delay time and duty ratio distortion are improved about 68% and 75%, respectively.