The search functionality is under construction.
The search functionality is under construction.

Keyword Search Result

[Keyword] linear frequency(8hit)

1-8hit
  • Multi-Segment Verification FrFT Frame Synchronization Detection in Underwater Acoustic Communications

    Guojin LIAO  Yongpeng ZUO  Qiao LIAO  Xiaofeng TIAN  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/09/01
      Vol:
    E106-B No:12
      Page(s):
    1501-1509

    Frame synchronization detection before data transmission is an important module which directly affects the lifetime and coexistence of underwater acoustic communication (UAC) networks, where linear frequency modulation (LFM) is a frame preamble signal commonly used for synchronization. Unlike terrestrial wireless communications, strong bursty noise frequently appears in UAC. Due to the long transmission distance and the low signal-to-noise ratio, strong short-distance bursty noise will greatly reduce the accuracy of conventional fractional fourier transform (FrFT) detection. We propose a multi-segment verification fractional fourier transform (MFrFT) preamble detection algorithm to address this challenge. In the proposed algorithm, 4 times of adjacent FrFT operations are carried out. And the LFM signal identifies by observing the linear correlation between two lines connected in pair among three adjacent peak points, called ‘dual-line-correlation mechanism’. The accurate starting time of the LFM signal can be found according to the peak frequency of the adjacent FrFT. More importantly, MFrFT do not result in an increase in computational complexity. Compared with the conventional FrFT detection method, experimental results show that the proposed algorithm can effectively distinguish between signal starting points and bursty noise with much lower error detection rate, which in turn minimizes the cost of retransmission.

  • Multitarget 2-D DOA Estimation Using Wideband LFMCW Signal and Triangle Array Composed of Three Receiver Antennas

    Wentao ZHANG  Chen MIAO  Wen WU  

     
    PAPER-Fundamental Theories for Communications

      Pubricized:
    2022/10/17
      Vol:
    E106-B No:4
      Page(s):
    307-316

    Direction of arrival (DOA) estimation has been a primary focus of research for many years. Research on DOA estimation continues to be immensely popular in the fields of the internet of things, radar, and smart driving. In this paper, a simple new two-dimensional DOA framework is proposed in which a triangular array is used to receive wideband linear frequency modulated continuous wave signals. The mixed echo signals from various targets are separated into a series of single-tone signals. The unwrapping algorithm is applied to the phase difference function of the single-tone signals. By using the least-squares method to fit the unwrapped phase difference function, the DOA information of each target is obtained. Theoretical analysis and simulation demonstrate that the framework has the following advantages. Unlike traditional phase goniometry, the framework can resolve the trade-off between antenna spacing and goniometric accuracy. The number of detected targets is not limited by the number of antennas. Moreover, the framework can obtain highly accurate DOA estimation results.

  • Parameter Estimation of Fractional Bandlimited LFM Signals Based on Orthogonal Matching Pursuit Open Access

    Xiaomin LI  Huali WANG  Zhangkai LUO  

     
    PAPER-Digital Signal Processing

      Vol:
    E102-A No:11
      Page(s):
    1448-1456

    Parameter estimation theorems for LFM signals have been developed due to the advantages of fractional Fourier transform (FrFT). The traditional estimation methods in the fractional Fourier domain (FrFD) are almost based on two-dimensional search which have the contradiction between estimation performance and complexity. In order to solve this problem, we introduce the orthogonal matching pursuit (OMP) into the FrFD, propose a modified optimization method to estimate initial frequency and final frequency of fractional bandlimited LFM signals. In this algorithm, the differentiation fractional spectrum which is used to form observation matrix in OMP is derived from the spectrum analytical formulations of the LFM signal, and then, based on that the LFM signal has approximate rectangular spectrum in the FrFD and the correlation between the LFM signal and observation matrix yields a maximal value at the edge of the spectrum (see Sect.3.3 for details), the edge spectrum information can be extracted by OMP. Finally, the estimations of initial frequency and final frequency are obtained through multiplying the edge information by the sampling frequency resolution. The proposed method avoids reconstruction and the traditional peak-searching procedure, and the iterations are needed only twice. Thus, the computational complexity is much lower than that of the existing methods. Meanwhile, Since the vectors at the initial frequency and final frequency points both have larger modulus, so that the estimations are closer to the actual values, better normalized root mean squared error (NRMSE) performance can be achieved. Both theoretical analysis and simulation results demonstrate that the proposed algorithm bears a relatively low complexity and its estimation precision is higher than search-based and reconstruction-based algorithms.

  • Circularity of the Fractional Fourier Transform and Spectrum Kurtosis for LFM Signal Detection in Gaussian Noise Model

    Guang Kuo LU  Man Lin XIAO  Ping WEI  Hong Shu LIAO  

     
    LETTER-Digital Signal Processing

      Vol:
    E98-A No:12
      Page(s):
    2709-2712

    This letter investigates the circularity of fractional Fourier transform (FRFT) coefficients containing noise only, and proves that all coefficients coming from white Gaussian noise are circular via the discrete FRFT. In order to use the spectrum kurtosis (SK) as a Gaussian test to check if linear frequency modulation (LFM) signals are present in a set of FRFT points, the effect of the noncircularity of Gaussian variables upon the SK of FRFT coefficients is studied. The SK of the α th-order FRFT coefficients for LFM signals embedded in a white Gaussian noise is also derived in this letter. Finally the signal detection algorithm based on FRFT and SK is proposed. The effectiveness and robustness of this algorithm are evaluated via simulations under lower SNR and weaker components.

  • Correction of Dechirp Distortion in Long-Distance Target Imaging with LFMCW-ISAR

    Wen CHANG  Zenghui LI  Jian YANG  Chunmao YEH  

     
    PAPER-Sensing

      Vol:
    E97-B No:11
      Page(s):
    2552-2559

    The combined linear frequency modulation continuous wave (LFMCW) and inverse synthetic aperture radar (ISAR) can be used for imaging long-distance targets because of its long-distance and high resolution imaging abilities. In this paper, we find and study the dechirp distortion phenomenon (DDP) for imaging long-distance targets by a dechirp-on-receive LFMCW radar. If the targets are very far from the radar, the maximum delay-time is not much smaller than a single sweep duration, and the dechirp distortion is triggered since the distance of the target is unknown in a LFMCW-ISAR system. DDP cannot be ignored in long-distance imaging because double images of a target appear in the frequency domain, which reduces resolution and degrades image quality. A novel LFMCW-ISAR signal model is established to analyze DDP and its negative effects on long-distance target imaging. Using the proportionately distributed energy of double images, the authors propose a method to correct dechirp distortion. In addition, the applicable scope of the proposed method is also discussed. Simulation results validate the theoretical analysis and the effectiveness of the proposed method.

  • Distributed Ranging Method for Wireless Sensor Network Localization

    Weile ZHANG  Qinye YIN  Wenjie WANG  

     
    LETTER

      Vol:
    E93-B No:12
      Page(s):
    3518-3521

    A novel distributed ranging method for wireless sensor networks (WSN) is proposed in this letter. Linear frequency modulation (LFM) waves are emitted from the two antenna elements equipped at the anchor node simultaneously to create an interference field. Through the frequency measurement of local RSSI (Received Signal Strength Indication) signal, the horizontal distance from the anchor node can be estimated independently at each sensor. Analysis and simulation results demonstrate the effectiveness of our proposed method.

  • Stress Classification Using Subband Based Features

    Tin Lay NWE  Say Wei FOO  Liyanage C. DE SILVA  

     
    PAPER-Speech Synthesis and Prosody

      Vol:
    E86-D No:3
      Page(s):
    565-573

    On research to determine reliable acoustic indicators for the type of stress present in speech, the majority of systems have concentrated on the statistics extracted from pitch contour, energy contour, wavelet based subband features and Teager-Energy-Operator (TEO) based feature parameters. These systems work mostly on pair-wise distinction between stress and neutral speech. Their performance decreases substantially when tested in multi-style detection among many stress categories. In this paper, a novel system is proposed using linear short time Log Frequency Power Coefficients (LFPC) and TEO based nonlinear LFPC features in both time and frequency domain. Five-state Hidden Markov Model (HMM) with continuous Gaussian mixture distribution is used. The stress classification ability of the system is tested using data from the SUSAS (Speech Under Simulated and Actual Stress) database to categorize five stress conditions individually. It is found that the performance of linear acoustic features LFPC is better than that of nonlinear TEO based LFPC feature parameters. Results show that with linear acoustic feature LFPC, average accuracy of 84% and the best accuracy of 95% can be achieved in the classification of the five categories. Results of test of the system under different signal-to-noise conditions show that the performance of the system does not degrade drastically with increase in noise. It is also observed that classification using nonlinear frequency domain LFPC features gives relatively higher accuracy than that using nonlinear time domain LFPC features.

  • Very Linear and Low-Noise Ka/Ku-Band Voltage Controlled Oscillators

    Tsuneo TOKUMITSU  Osamu BABA  Kiyoshi KAJII  

     
    PAPER

      Vol:
    E85-C No:12
      Page(s):
    2008-2014

    A simple and practical methodology to make microwave voltage-controlled oscillators (VCOs) very linear is presented. Incorporating a very short microstrip line ( λg/4) for varactor's bias feed, the C-V curve was shifted by a constant -Δ C and performed a capacitance tailored nearly proportional to VCONT-2. This modification featured very linear VCO implementation at no expense of housing and phase noise performance. Ka- and Ku-band VCOs fabricated with this new technique exhibited a constant tuning sensitivity in a wide control voltage range (2-10 V). The phase noise level at 100 kHz offset was as low as -107 dBc/Hz for a 13 GHz-band VCO and better than -85 dBc/Hz for a 38 GHz-band VCO, due to combination of capacitor-coupled high-Q resonator and multiplier. This technology is very effective for quasi-millimeter-wave and millimeter-wave FM/FSK modulation and FMCW radar applications.